To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston...To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.展开更多
Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensi...Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.展开更多
Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test ...Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.展开更多
Dynamic properties of limestone govern the rock fragmentation characteristics.Failure of rock under tension is more likely as compared to failure under compression under static or dynamic loading both.Since the applic...Dynamic properties of limestone govern the rock fragmentation characteristics.Failure of rock under tension is more likely as compared to failure under compression under static or dynamic loading both.Since the application of explosives creates dynamic loading and is a dynamic event,the determination of dynamic modulus values is technically more appropriate than the static measurement.The rock fragmentation would significantly improve by investigating the dynamic uniaxial tensile strength as specific fracture energy,stress intensity factor,fracture toughness of any detonating blast hole depend heavily on dynamic rock property and not on static rock property.Most of the limestone projects globally are still accustomed with using static tensile strength to understand the rock fragmentation.The present papers deal with determination of dynamic uniaxial tensile property using split Hopkinson pressure bar(SHPB)system.The nano second high speed camera with laser captures the crack surface opening velocity during dynamic loading.It was observed during data analysis that dynamic tensile strength of limestone increases by 1.2-2.3 times of the static strength.It may be concluded by the study that determination of dynamic tensile strength is paramount for understanding the rock fragmentation.展开更多
For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already ...For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate.展开更多
The Sangarédi bauxite deposit in the Republic of Guinea contains several bauxite types depending on their litho-genetics. For rational and sustainable exploitation, determining the physical and mechanical propert...The Sangarédi bauxite deposit in the Republic of Guinea contains several bauxite types depending on their litho-genetics. For rational and sustainable exploitation, determining the physical and mechanical properties of these different bauxite types is essential for mining companies. This paper presents a model for the physico-mechanical characterization of Sangarédi bauxites according to their litho-genetic type. Eight pits were drilled, and samples were collected from different layers at different depth intervals for each bauxite type. Physical and mechanical characterization tests were then carried out on 27 samples to determine the following parameters: water of absorption (%), compressive strength (kgf/cm2) and dynamic tensile strength (kgf/cm2). The effect of depth of sampling on these physico-mechanical parameters was evaluated. An average value of the parameters was made for each bauxite type. The results showed that the physico-mechanical characteristics of bauxites depend on the depth of sample collection, and the average value of the parameters constitutes the representative values of the bauxite type. Finally, a comparative study of the average value of the physico-mechanical parameters of the different bauxite types was carried out.展开更多
基金Projects(41972283,41630642)supported by the National Natural Science Foundation of ChinaProject(51927808)supported by the National Key Scientific Instrument and Equipment Development,ChinaProject(CX2018B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.
基金provided by the Innovative Research Groups of Natural Science Foundation of China (NSFC) (Grant No. 51321065)NSFC (Grant No. 51479131)The research of Kaiwen Xia was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery (Grant No. 72031326)
文摘Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks.Here we examine dynamic tensile strength values of Laurentian granite(LG) measured from three methods: dynamic direct tension, dynamic Brazilian disc(BD) test, and dynamic semi-circular bending(SCB). We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.
文摘Dynamic properties of limestone govern the rock fragmentation characteristics.Failure of rock under tension is more likely as compared to failure under compression under static or dynamic loading both.Since the application of explosives creates dynamic loading and is a dynamic event,the determination of dynamic modulus values is technically more appropriate than the static measurement.The rock fragmentation would significantly improve by investigating the dynamic uniaxial tensile strength as specific fracture energy,stress intensity factor,fracture toughness of any detonating blast hole depend heavily on dynamic rock property and not on static rock property.Most of the limestone projects globally are still accustomed with using static tensile strength to understand the rock fragmentation.The present papers deal with determination of dynamic uniaxial tensile property using split Hopkinson pressure bar(SHPB)system.The nano second high speed camera with laser captures the crack surface opening velocity during dynamic loading.It was observed during data analysis that dynamic tensile strength of limestone increases by 1.2-2.3 times of the static strength.It may be concluded by the study that determination of dynamic tensile strength is paramount for understanding the rock fragmentation.
基金Supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through Discovery Grant(72031326)
文摘For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate.
文摘The Sangarédi bauxite deposit in the Republic of Guinea contains several bauxite types depending on their litho-genetics. For rational and sustainable exploitation, determining the physical and mechanical properties of these different bauxite types is essential for mining companies. This paper presents a model for the physico-mechanical characterization of Sangarédi bauxites according to their litho-genetic type. Eight pits were drilled, and samples were collected from different layers at different depth intervals for each bauxite type. Physical and mechanical characterization tests were then carried out on 27 samples to determine the following parameters: water of absorption (%), compressive strength (kgf/cm2) and dynamic tensile strength (kgf/cm2). The effect of depth of sampling on these physico-mechanical parameters was evaluated. An average value of the parameters was made for each bauxite type. The results showed that the physico-mechanical characteristics of bauxites depend on the depth of sample collection, and the average value of the parameters constitutes the representative values of the bauxite type. Finally, a comparative study of the average value of the physico-mechanical parameters of the different bauxite types was carried out.