The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL...The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.展开更多
This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoid...This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.展开更多
基金supported by the National Natural Science Foundation of China(40805004, 40705039 and 90715031)the "Mini-projecton detailed survey and evaluation of wind energy resources"supported by National Climate Center of Chinese Meteoro-logical Administration (CWERA2010002)
文摘The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.
基金supported by the National Natural Science Foundation of China(No.61175084)
文摘This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles' overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.