期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Stability and control of dynamic walking for a five-link planar biped robot with feet 被引量:2
1
作者 Chenglong FU Ken CHEN +1 位作者 Jing XIONG Leon XU 《控制理论与应用(英文版)》 EI 2007年第2期113-120,共8页
During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addres... During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addresses the asymptotic orbit stability for dimension-variant hybrid systems (DVHS). Based on the generalized Poincare map, the stability criterion for DVHS is also presented, and the result is then used to study dynamic walking for a five-link planar biped robot with feet. Time-invariant gait planning and nonlinear control strategy for dynamic walking with fiat feet is also introduced. Simulation results indicate that an asymptotically stable limit cycle of dynamic walking is achieved by the proposed method. 展开更多
关键词 Biped robot dynamic walking Orbit stability Dimension-variant hybrid systems Nonlinear control
下载PDF
Study on Gait Planning of Dynamic Walking of Biped Robots Based on Optimization Theory
2
作者 谭冠政 《High Technology Letters》 EI CAS 1997年第1期22-25,共4页
In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex opt... In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex optimization theory. The optimization algorithm for finding the inverse kinematic solution is developed, the construction method of joint trajectories is given, and the gait planning method of dynamic walking of biped robots is proposed. 展开更多
关键词 Biped robot dynamic walking Gait planning Complex optimization theory
下载PDF
Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints 被引量:1
3
作者 Yan Huang Qi-Ning Wang +1 位作者 Yue Gao Guang-Ming Xie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1457-1465,共9页
Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait ... Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of fiat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes. 展开更多
关键词 Passive dynamic walking · Segmented feet·Compliant joints· Bipeds
下载PDF
Motion analysis of passive dynamic walking with a rigorously constraint model: A necessary condition for maintaining period-1 gait
4
作者 Yanqiu Zheng Longchuan Li +3 位作者 Yuxuan Xiang Yuetong He Cong Yan Fumihiko Asano 《Biomimetic Intelligence & Robotics》 2022年第2期48-54,共7页
The friction force is an important environmental factor that influences dynamic walking.While most of the related works simply assume static friction or Coulomb friction,we use the LuGre friction,which accounts for bo... The friction force is an important environmental factor that influences dynamic walking.While most of the related works simply assume static friction or Coulomb friction,we use the LuGre friction,which accounts for both static and dynamic effects,to model the horizontal ground reaction force of passive dynamic walking.We present a detailed mathematical modeling method and perform numerical simulations using it.Furthermore,we analyze the ground surface cases of the Coulomb friction condition and static friction condition to verify the model’s generalization.We discover the required condition for the existence of the period-1 gait through investigation.Our mathematical model and theoretical analysis add to our understanding of passive dynamic walking,which helps to positively utilize the natural dynamics of the legged locomotion system in control design. 展开更多
关键词 Bipedal robot Passive dynamic walking LuGre friction model
原文传递
Planning and Control for Passive Dynamics Based Walking of 3D Biped Robots 被引量:4
5
作者 Xiang Luo Wenlong Xu 《Journal of Bionic Engineering》 SCIE EI CSCD 2012年第2期143-155,共13页
Efficient walking is one of the main goals of research on biped robots. Passive Dynamics Based Walking (PDBW) has been proven to be an efficient pattern in numerous previous approaches to 2D biped walking. The goal ... Efficient walking is one of the main goals of research on biped robots. Passive Dynamics Based Walking (PDBW) has been proven to be an efficient pattern in numerous previous approaches to 2D biped walking. The goal of this study is to develop feasible method for the application of PDBW to 3D robots. First a hybrid control method is presented, where a previously proposed two-point-foot walking pattern is employed to generate a PDBW gait in the sagittal plane and, in the frontal plane, a systematic balance control algorithm is applied including online planning of the landing point of the swing leg and feedback control of the stance foot. Then a multi-space planning structure is proposed to implement the proposed method on a 13-link 3D robot. Related kinematics and planning details of the robot are presented. Furthermore, a simulation of the 13-link biped robot verifies that stable and highly efficient walking can be achieved by the proposed control method. In addition, a number of features of the biped walking, including the transient powers and torques of the joints are explored. 展开更多
关键词 3D biped robot passive dynamics based walking balance control multi-space planning SIMULATION
原文传递
Preface 被引量:1
6
作者 Yan Huang Qi-Ning Wang +1 位作者 Yue Gao Guang-Ming Xie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第6期I0003-I0003,共1页
Micromechanics aims mainly at establishing the quantitative relation between the macroscopic mechanical behavior and the microstructure of heterogeneous materials.
关键词 Erratum to Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints
下载PDF
Numerical modelling of flow and transport in rough fractures 被引量:2
7
作者 Scott Briggs Bryan W.Karney Brent E.Sleep 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期535-545,共11页
Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validat... Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RWmethod are well suited to parallel implementation on GPGPUs because they require only next-neighbourcommunication and thus can reduce expenses. The LBM model is an order of magnitude faster onGPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified forparallel plate flow, backward facing step and single fracture flow; and the RWmodel is verified for pointsourcediffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithmsplace limitations on the discrete displacement of fluid or particle transport per time step to minimise thenumerical error that must be considered during implementation. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Hydrogeology Fracture flow Solute transport Computational fluid dynamics Lattice Boltzmann method(LBM) Random walk(RW)
下载PDF
Development of Minimalist Bipedal Walking Robot with Flexible Ankle and Split-mass Balancing Systems 被引量:4
8
作者 Hudyjaya Siswoyo Jo1Nazim Mir-Nasiri 《International Journal of Automation and computing》 EI CSCD 2013年第5期425-437,共13页
This paper presents a novel design of minimalist bipedal walking robot with flexible ankle and split-mass balancing systems.The proposed approach implements a novel strategy to achieve stable bipedal walk by decouplin... This paper presents a novel design of minimalist bipedal walking robot with flexible ankle and split-mass balancing systems.The proposed approach implements a novel strategy to achieve stable bipedal walk by decoupling the walking motion control from the sideway balancing control.This strategy allows the walking controller to execute the walking task independently while the sideway balancing controller continuously maintains the balance of the robot.The hip-mass carry approach and selected stages of walk implemented in the control strategy can minimize the efect of major hip mass of the robot on the stability of its walk.In addition,the developed smooth joint trajectory planning eliminates the impacts of feet during the landing.In this paper,the new design of mechanism for locomotion systems and balancing systems are introduced.An additional degree of freedom introduced at the ankle joint increases the sensitivity of the system and response time to the sideway disturbances.The efectiveness of the proposed strategy is experimentally tested on a bipedal robot prototype.The experimental results provide evidence that the proposed strategy is feasible and advantageous. 展开更多
关键词 Bipedal robot bipedal walking stability control robot dynamics legged locomotion
原文传递
Overview of Gait Synthesis for the Humanoid COMAN 被引量:2
9
作者 Chengxu Zhou Xin Wang +1 位作者 Zhibin Li Nikos Tsagarakis 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第1期15-25,共11页
This paper focuses on the developments of a generic gait synthesis for the humanoid robot COMAN. Relying on the essential Gait Pattern Generator (GPG), the proposed synthesis offers enhanced versatilities for the lo... This paper focuses on the developments of a generic gait synthesis for the humanoid robot COMAN. Relying on the essential Gait Pattern Generator (GPG), the proposed synthesis offers enhanced versatilities for the locomotion under different purposes, and also provides the data storage and communication mechanisms among different modules. As an outcome, we are able to augment new abilities for COMAN by integrating new control modules and software tools at a cost of very few modifications. Moreover, foot placement optimization is introduced to the GPG to optimize the gait parameter references in order to meet the robot's natural dynamics and kinematics, which enhances the synthesis's robustness while it's being implemented on real robots. We have also presented a practical approach to generate pelvis motion from CoM references using a simplified three-point-mass model, as well as a straightforward but effective idea for the state estimation using the sensory feedback. Three physical experiments were studied in an increasing complexity to demonstrate the effectiveness and successful implementation of the proposed gait synthesis on a real humanoid system. 展开更多
关键词 humanoid robots bipedal locomotion gait synthesis dynamic walking
原文传递
Modeling and simulation of normal and hemiparetic gait
10
作者 Lely A. LUENGAS Esperanza CAMARGO Giovanni SANCHEZ 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第3期233-241,共9页
Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomecha- ... Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomecha- nics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table ofanthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetie gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait. 展开更多
关键词 bipedal gait BIOMECHANICS dynamic walking gait model human gait hemiparetic human gait
原文传递
Ion Transport Mechanism in ClC-Type Channel Protein under Complex Electrostatic Potential 被引量:1
11
作者 YU Tao GUO Xu +1 位作者 KE Xuan SANG Jianping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第6期466-472,共7页
In order to illustrate the ion transport mechanism of chloride channel(Cl C) protein,a type of Cl C protein,Cl C-ec1,from Escherichia coli is embedded into an explicit membranewater system by using software VMD. The... In order to illustrate the ion transport mechanism of chloride channel(Cl C) protein,a type of Cl C protein,Cl C-ec1,from Escherichia coli is embedded into an explicit membranewater system by using software VMD. Then a parallel molecular dynamics(MD) simulation is employed to equilibrate the Cl C-ec1 structure for 27.5 ns at temperature 298.15 K. Based on this equilibrated structure,we compute the channel geometric size variation and electrostatic potential distribution along the channel. Meanwhile,Cl^- transport process is simulated using oriented random walk method under variable external potential. The simulation result shows that Cl^- transport velocity depends on the width of the narrowest channel region. Mutation of negative glutamate E148 can produce positive potential,which is beneficial for Cl^- transport,around external Cl^- binding region in the channel. The simulated current-voltage curves about Cl^- transporting in Cl C-ec1 protein agree with Jayaram's experimental results. 展开更多
关键词 ion transport ClC channel protein molecular dynamics simulation random walk simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部