A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied...A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied component,DBTs can not only get rid of the dependence of machine(s),but also get better performance.From our systematical study and evaluation,experimental results demonstrate that if V-IIS is well designed,without affecting the other optimizing measures,this could make DBT's performance close to those who do not have intermediate instructions.This study is an important step towards the grand goal of high performance "multi-source" and "multi-target" dynamic binary translation.展开更多
Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the...Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the mixing effects lead to these features and whether these features are universal for particles with anisotropic geometries remains unclear. Here, we employ event-driven molecular dynamics simulation to investigate the dynamical and structural properties of binary two-dimensional hard-ellipse mixtures. We find that the relaxation dynamics for translational degrees of freedom exhibit equivalent trends as those observed in binary hard-spherical mixtures. However, the glass transition densities for translational and rotational degrees of freedom present different dependencies on size disparity and composition. Furthermore,we propose a mechanism based on structural properties that explain the observed mixing effects and decoupling behavior between translational and rotational motions in binary hard-ellipse systems.展开更多
基金Projects(12R21414600)supported by Shanghai Municipal Science and Technology Commission,China
文摘A new efficient adapting virtual intermediate instruction set,V-IIS,is designed and implemented towards the optimized dynamic binary translator (DBT) system.With the help of this powerful but previously little-studied component,DBTs can not only get rid of the dependence of machine(s),but also get better performance.From our systematical study and evaluation,experimental results demonstrate that if V-IIS is well designed,without affecting the other optimizing measures,this could make DBT's performance close to those who do not have intermediate instructions.This study is an important step towards the grand goal of high performance "multi-source" and "multi-target" dynamic binary translation.
基金supported by the National Natural Science Foundation of China(21474109,21674055)the International Partnership Program of Chinese Academy of Sciences(121522KYSB20160015)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2016204)
文摘Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the mixing effects lead to these features and whether these features are universal for particles with anisotropic geometries remains unclear. Here, we employ event-driven molecular dynamics simulation to investigate the dynamical and structural properties of binary two-dimensional hard-ellipse mixtures. We find that the relaxation dynamics for translational degrees of freedom exhibit equivalent trends as those observed in binary hard-spherical mixtures. However, the glass transition densities for translational and rotational degrees of freedom present different dependencies on size disparity and composition. Furthermore,we propose a mechanism based on structural properties that explain the observed mixing effects and decoupling behavior between translational and rotational motions in binary hard-ellipse systems.