期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results 被引量:7
1
作者 R.A.T.M. Ranasinghe M.B. Jaksa +1 位作者 Y.L. Kuo F. Pooya Nejad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期340-349,共10页
Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable predic... Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC.This study presents the application of artificial neural networks(ANNs) for a priori prediction of the effectiveness of RDC.The models are trained with in situ dynamic cone penetration(DCP) test data obtained from previous civil projects associated with the 4-sided impact roller.The predictions from the ANN models are in good agreement with the measured field data,as indicated by the model correlation coefficient of approximately 0.8.It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types. 展开更多
关键词 Rolling dynamic compaction(RDC) Ground improvement Artificial neural network(ANN) dynamic cone penetration(DCP) test
下载PDF
Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction 被引量:3
2
作者 T.Shenthan R.Nashed +1 位作者 S.Thevanayagam G.R.Martin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期39-50,共12页
The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and miti... The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils. 展开更多
关键词 liquefaction mitigation silty soils composite stone columns dynamic compaction
下载PDF
Improvement parameters in dynamic compaction adjacent to the slopes 被引量:2
3
作者 Elham Ghanbari Amir Hamidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期233-236,共4页
Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic comp... Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement,however, these parameters are not studied for improvement adjacent to the slopes or trenches. In thisresearch, four different slopes with different inclinations are modeled numerically using the finiteelement code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safetyare kept similar for all trenches and determined numerically by application of gravity loads to the slopeusing strength reduction method (SRM). The analysis focuses on crater depth and improvement regionwhich are compared to the state of flat ground. It can be observed that compacted area adjacent to theslopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depthincreases with increase in slope inclination.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 dynamic compaction Slopes and trenches Crater depth Improvement depth
下载PDF
Reinforcement effects of ground treatment with dynamic compaction replacement in cold and saline soil regions 被引量:2
4
作者 Yu Zhang JianKun Liu +1 位作者 JianHong Fang AnHua Xu 《Research in Cold and Arid Regions》 CSCD 2013年第4期440-443,共4页
The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement e... The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils. 展开更多
关键词 dynamic compaction replacement saline soils reinforcement effects
下载PDF
Application of dynamic compaction and rolling compaction in the subgrade improvement of Qarhan-Golmud Highway
5
作者 Yu Zhang JianKun Liu +1 位作者 JianHong Fang AnHua Xu 《Research in Cold and Arid Regions》 CSCD 2013年第5期603-607,共5页
Melt shrinkage, salt bulge, and corrosiveness are common problems with saline soils, which damage highway foundations and cause huge financial losses. In order to improve the saline soil subgrade, dynamic compaction ... Melt shrinkage, salt bulge, and corrosiveness are common problems with saline soils, which damage highway foundations and cause huge financial losses. In order to improve the saline soil subgrade, dynamic compaction (DC) and rolling compaction (RC) technology were applied on the Qarhan-Golmud Highway in Qinghai Province, China. A field experi- ment was conducted in which shear strength, deformation modulus, and the working mechanism of the composite foun- dation were analyzed after reinforcement. Both the DC and RC methods were found to be effective and helped to improve the foundation strength of saline soils, although the ultimate bearing capacity and deformation modulus of the RC method were lower than that of the DC method. 展开更多
关键词 dynamic compaction rolling compaction saline soils reinforcement effects
下载PDF
Continuous Dynamic Rotation Measurements Using a Compact Cold Atom Gyroscope 被引量:11
6
作者 姚战伟 鲁思滨 +4 位作者 李润兵 王锴 曹雷 王谨 詹明生 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期41-44,共4页
We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase ... We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase shift and contrast of the interference fringe are experimentally investigated. The results show that the contrast of the interference fringe is well held when the platform is rotated, and the phase shift of the interference fringe is linearly proportional to the rotation rate of the platform. The long-term stability, which is evaluated by the overlapped Allan deviation, is 8.5 × 10^-6 rad/s over the integrating time of 1000s. 展开更多
关键词 of on as is in Continuous dynamic Rotation Measurements Using a Compact Cold Atom Gyroscope
下载PDF
舍弗勒收购Compact Dynamics
7
《汽车观察》 2017年第1期17-17,共1页
2016年12月20日,汽车和工业产品供应商舍弗勒与塞米控集团有限公司签署收购协议,购买高性能电机制造商Compact Dynamics股份有限公司51%的股份,交易预计于2017年第一季度完成。与此同时,舍弗勒和塞米控还将在电力电子系统开发和电力电... 2016年12月20日,汽车和工业产品供应商舍弗勒与塞米控集团有限公司签署收购协议,购买高性能电机制造商Compact Dynamics股份有限公司51%的股份,交易预计于2017年第一季度完成。与此同时,舍弗勒和塞米控还将在电力电子系统开发和电力电子元件集成领域展开合作。通过本次收购和合作,舍弗勒成功拓展了其在电机和电力电子领域的技术实力。 展开更多
关键词 舍弗勒 Compact dynamics 集成领域
下载PDF
Model⁃Free Predictive Control for a Kind of High Order Nonlinear Systems
8
作者 Ye Tian Baili Su 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第2期62-69,共8页
For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the imp... For a type of high⁃order discrete⁃time nonlinear systems(HDNS)whose system models are undefined,a model⁃free predictive control(MFPC)algorithm is proposed in this paper.At first,an estimation model is given by the improved projection algorithm to approach the controlled nonlinear system.Then,on the basis of the estimation model,a predictive controller is designed by solving the finite time domain rolling optimization quadratic function,and the controller’s explicit analytic solution is also obtained.Furthermore,the closed⁃loop system's stability can be ensured.Finally,the results of simulation reveal that the presented control strategy has a faster convergence speed as well as more stable dynamic property compared with the model⁃free sliding mode control(MFSC). 展开更多
关键词 nonlinear system compact dynamic linearization(CDL) model predictive control(MPC) model-free control(MFC) projection algorithm
下载PDF
Numerical Analysis of the Soil Compaction Degree Under Multi-Location Tamping
9
作者 王威 窦锦钟 +1 位作者 陈锦剑 王建华 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第4期417-433,共17页
Dynamic compaction(DC) is an efficient soil improvement technique. The previous numerical studies mainly focus on the soil response of single location tamping, but ignore the soil compaction degree under multilocation... Dynamic compaction(DC) is an efficient soil improvement technique. The previous numerical studies mainly focus on the soil response of single location tamping, but ignore the soil compaction degree under multilocation tamping. In this study, a numerical investigation of multi-location tamping in granular soils is carried out using three-dimensional(3D) finite element model(FEM). The behaviors of the granular soils are described by means of the viscoplastic cap model. The constitutive relationship of the soils is implemented into LS-DYNA and is integrated with 3D FEM for numerical investigation. Then utilizing the field data from the previous studies,we investigate the soil compaction degree at different stages by a case of two basic patterns, and discuss the cause of soil response. Lastly, we evaluate the effect of construction parameters on soil compaction. The simulation results show that the previous tamping affects the soil compaction degree beneath the adjacent tamping location,and the effect is greater near the side of previous location. Meanwhile, the soil compaction degree around the existing tamping crater weakens due to the adjacent tamping. Moreover, the rational selection of DC construction parameters can improve the soil compaction degree, and some hints on the effect of soil compaction are given. 展开更多
关键词 dynamic compaction(DC) soil improvement multi-tamping locations finite elements plastic volumetric strain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部