AIM: To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma(HCC). METHODS: From January 2014 to April ...AIM: To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma(HCC). METHODS: From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant(K_(trans)), plasma flow(F_p), permeability surface area product(PS), efflux rate constant(k_(ep)), extravascular extracellular space volume ratio(V_e), blood plasma volume ratio(V_p), and hepatic perfusion index(HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model(2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. RESULTS: The F_p value was greater than the PS value(F_P = 1.07 m L/m L per minute, PS = 0.19 m L/m L per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dualinput 2CXM, respectively. There were no significant differences in the K_(ep), V_p, or HPI between the dual-input extended Tofts model and the dual-input 2CXM(P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for V_e, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dualinput 2CXM were correlated with K_(trans) derived from the dual-input extended Tofts model(P = 0.002, r = 0.566; P = 0.002, r = 0.570); K_(ep), V_p, and HPI between the two kinetic models were positively correlated(P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, V_e was significantly less than that in the dual input 2CXM(P = 0.004), and no significant correlation was seen between the two tracer kinetic models(P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models(P > 0.05).CONCLUSION: A dual-input two-compartment pharmacokinetic model(a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the V_e; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.展开更多
Preoperative detection of lymph nodes(LNs) metastasis is always highly challenging for radiologists nowadays. The utility of quantitative dynamic contrast-enhanced magnetic resonance imaging(QDCE-MRI) in identifyi...Preoperative detection of lymph nodes(LNs) metastasis is always highly challenging for radiologists nowadays. The utility of quantitative dynamic contrast-enhanced magnetic resonance imaging(QDCE-MRI) in identifying LNs metastasis is not well understood. In the present study, 59 patients with histologically proven rectal carcinoma underwent preoperative QDCE-MRI. The short axis diameter ratio, long axis diameter ratio, short-to-long axis diameter ratio and QDEC-MRI parameters(Ktrans, Kep, fPV and Ve) values were compared between the non-metastatic(n=44) and metastatic(n=35) LNs groups based on pathological examination. Compared with the non-metastatic group, the metastatic group exhibited significantly higher short axis diameter(7.558±0.668 mm vs. 5.427±0.285 mm), Ktrans(0.483±0.198 min-1 vs. 0.218±0.116 min^-1) and Ve(0.399±0.118 vs. 0.203±0.096) values(all P〈0.05). The short-to-long axis diameter ratio, long axis diameter ratio, Kep and fPV values did not show significant differences between the two groups. In conclusion, our results showed that for LNs larger than 5 mm in rectal cancer, there are distinctive differences in the Ktrans and Ve values between the metastatic and non-metastatic LNs, suggesting that QDCE-MRI may be potentially helpful in identifying LNs status.展开更多
AIM: To investigate the merits of texture analysis on parametric maps derived from pharmacokinetic modeling with dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) as imaging biomarkers for the prediction o...AIM: To investigate the merits of texture analysis on parametric maps derived from pharmacokinetic modeling with dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) as imaging biomarkers for the prediction of treatment response in patients with head and neck squamous cell carcinoma(HNSCC). METHODS: In this retrospective study,19 HNSCC patients underwent pre- and intra-treatment DCEMRI scans at a 1.5T MRI scanner. All patients had chemo-radiation treatment. Pharmacokinetic modeling was performed on the acquired DCE-MRI images,generating maps of volume transfer rate(Ktrans) and volume fraction of the extravascular extracellular space(ve). Image texture analysis was then employed on maps of Ktrans and ve,generating two texture measures: Energy(E) and homogeneity.RESULTS: No significant changes were found for the mean and standard deviation for Ktrans and ve between pre- and intra-treatment(P > 0.09). Texture analysis revealed that the imaging biomarker E of ve was significantly higher in intra-treatment scans,relative to pretreatment scans(P < 0.04). CONCLUSION: Chemo-radiation treatment in HNSCC significantly reduces the heterogeneity of tumors.展开更多
In many areas of oncology, dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) has proven to be a clinically useful, non-invasive functional imaging technique to quantify tumor vasculature and tumor perfusio...In many areas of oncology, dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) has proven to be a clinically useful, non-invasive functional imaging technique to quantify tumor vasculature and tumor perfusion characteristics. Tumor angiogenesis is an essential process for tumor growth, proliferation, and metastasis. Malignant lesions demonstrate rapid extravasation of contrast from the intravascular space to the capillary bed due to leaky capillaries associated with tumor neovascularity. DCE-MRI has the potential to provide information regarding blood flow, areas of hypoperfusion, and variations in endothelial permeability and microvessel density to aid treatment selection, enable frequent monitoring during treatment and assess response to targeted therapy following treatment. This review will discuss the current status of DCE-MRI in cancer imaging, with a focus on its use in imaging prostate malignancies as well as weaknesses that limit its widespread clinical use. The latest techniques for quantification of DCE-MRI parameters will be reviewed and compared.展开更多
Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) ...Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) germ cell tumors(GCTs).Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic(ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.Results: A significant elevation in transfer constant(K^trans) and extravascular extracellular space(Ve)(P=0.000), as well as a significant reduction in rate constant(Kep)(P=0.000) was observed in tumors. K^trans, relative K^trans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K^trans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value(PPV) of 95.8%, and negative predictive value(NPV) of 100%.Conclusions: Relative K^trans appeared promising in predicting tumor response to radiation therapy(RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.展开更多
BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tu...BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tumor. However, the treatment response is observed only in a fraction of patients due to the partial radiological response secondary to stabilization of abnormal vessels which does not essentially indicate a true antitumor effect. Perfusion-weighted magnetic resonance imaging(PWMRI) techniques have shown implicitness as a strong imaging biomarker for gliomas since they give hemodynamic information of blood vessels. Hence, there is a rapid expansion of PW-MRI related studies and clinical applications.AIM To determine the diagnostic performance of PW-MRI techniques including:(A)dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI); and(B)dynamic susceptibility contrast magnetic resonance imaging(DSC-MRI) for evaluating response to antiangiogenic therapy in patients with recurrent gliomas.METHODS Databases such as PubMed(MEDLINE included), EMBASE, and Google Scholar were searched for relevant original articles. The included studies were assessed for methodological quality with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Medical imaging follow-up or histopathological analysis was used as the reference standard. The data were extracted by two reviewers independently, and then the sensitivity, specificity, summary receiver operating characteristic curve, area under the curve(AUC), and heterogeneity were calculated using Meta-Disc 1.4 software.RESULTS This study analyzed a total of six articles. The overall sensitivity for DCE-MRI and DSC-MRI was 0.69 [95% confidence interval(CI): 0.53-0.82], and the specificity was 0.99(95%CI: 0.93-1) by a random effects model(DerSimonianeeLaird model). The likelihood ratio(LR) +, LR-, and diagnostic odds ratio(DOR)were 12.84(4.54-36.28), 0.35(0.22-0.53), and 24.44(7.19-83.06), respectively. The AUC(± SE) was 0.9921(± 0.0120), and the Q* index(± SE) was 0.9640(± 0.0323).For DSC-MRI, the sensitivity was 0.73, the specificity was 0.98, the LR+ was 7.82,the LR-was 0.32, the DOR was 31.65, the AUC(± SE) was 0.9925(± 0.0132), and the Q* index was 0.9649(± 0.0363). For DCE-MRI, the sensitivity was 0.41, the specificity was 0.97, the LR+ was 5.34, the LR-was 0.71, the DOR was 8.76, the AUC(± SE) was 0.9922(± 0.2218), and the Q* index was 0.8935(± 0.3037).CONCLUSION This meta-analysis demonstrated a beneficial value of PW-MRI(DSC-MRI and DCE-MRI) in monitoring the response of recurrent gliomas to antiangiogenic therapy, with reasonable sensitivity, specificity, +LR, and-LR.展开更多
Among five types of pulmonary hypertension,chronic thromboembolic pulmonary hypertension(CTEPH)is the only curable form,but prompt and accurate diagnosis can be challenging.Computed tomography and nuclear medicine-bas...Among five types of pulmonary hypertension,chronic thromboembolic pulmonary hypertension(CTEPH)is the only curable form,but prompt and accurate diagnosis can be challenging.Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH,however these are limited by radiation exposure,subjective qualitative bias,and lack of cardiac functional assessment.This review aims to assess the methodology,diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages,limitations and future research scope.展开更多
Objective: To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging(DCE-MRI) with that of^18F-fluorodeoxyglucose(^18F-FDG) positron emission tomography/computed...Objective: To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging(DCE-MRI) with that of^18F-fluorodeoxyglucose(^18F-FDG) positron emission tomography/computed tomography(PET/CT) in the differentiation of malignant and benign solitary pulmonary nodules(SPNs).Methods: Forty-nine patients with SPNs were included in this prospective study. Thirty-two of the patients had malignant SPNs, while the other 17 had benign SPNs. All these patients underwent DCE-MRI and ^18F-FDG PET/CT examinations. The quantitative MRI pharmacokinetic parameters, including the trans-endothelial transfer constant(K^trans), redistribution rate constant(Kep), and fractional volume(Ve), were calculated using the Extended-Tofts Linear two-compartment model. The ^18F-FDG PET/CT parameter, maximum standardized uptake value(SUV(max)), was also measured. Spearman's correlations were calculated between the MRI pharmacokinetic parameters and the SUV(max) of each SPN. These parameters were statistically compared between the malignant and benign nodules. Receiver operating characteristic(ROC) analyses were used to compare the diagnostic capability between the DCE-MRI and ^18F-FDG PET/CT indexes.Results: Positive correlations were found between K^trans and SUV(max), and between K(ep) and SUV(max)(P〈0.05).There were significant differences between the malignant and benign nodules in terms of the K^trans, K(ep) and SUV(max) values(P〈0.05). The areas under the ROC curve(AUC) of K^trans) K(ep) and SUV(max) between the malignant and benign nodules were 0.909, 0.838 and 0.759, respectively. The sensitivity and specificity in differentiating malignant from benign SPNs were 90.6% and 82.4% for K^trans; 87.5% and 76.5% for K(ep); and 75.0% and 70.6%for SUV(max), respectively. The sensitivity and specificity of K^trans and K(ep) were higher than those of SUV(max), but there was no significant difference between them(P〉0.05).Conclusions: DCE-MRI can be used to differentiate between benign and malignant SPNs and has the advantage of being radiation free.展开更多
The goal in brain tumor surgery is to remove the maxi-mum achievable amount of the tumor, preventing damage to "eloquent" brain regions as the amount of brain tumor resection is one of the prognostic factors...The goal in brain tumor surgery is to remove the maxi-mum achievable amount of the tumor, preventing damage to "eloquent" brain regions as the amount of brain tumor resection is one of the prognostic factors for time to tumor progression and median survival. To achieve this goal, a variety of technical advances have been in-troduced, including an operating microscope in the late 1950 s, computer-assisted devices for surgical navigation and more recently, intraoperative imaging to incorporate and correct for brain shift during the resection of the lesion. However, surgically induced contrast enhancement along the rim of the resection cavity hampers interpretation of these intraoperatively acquired magnetic resonance images. To overcome this uncertainty, perfusion techniques [dynamic contrast enhanced magnetic resonance imaging(DCE-MRI), dynamic susceptibility contrast magnetic resonance imaging(DSC-MRI)] have been introduced that can differentiate residual tumor from surgically induced changes at the rim of the resec-tion cavity and thus overcome this remaining uncer-tainty of intraoperative MRI in high grade brain tumor resection.展开更多
Magnetic resonance imaging(MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to...Magnetic resonance imaging(MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response.展开更多
The early detection of focal liver lesions,particularly those which are malignant,is of utmost importance.The resection of liver metastases of some malignancies(including colorectal cancer)has been shown to improve th...The early detection of focal liver lesions,particularly those which are malignant,is of utmost importance.The resection of liver metastases of some malignancies(including colorectal cancer)has been shown to improve the survival of patients.Exact knowledge of the number,size,and regional distribution of liver metastases is essential to determine their resectability.Almost all focal liver lesions larger than 10 mm are demonstrated with current imaging techniques but the detection of smaller focal liver lesions is still relatively poor.One of the advantages of magnetic resonance imaging(MRI)of the liver is better soft tissue contrast(compared to other radiologic modalities),which allows better detection and characterization of the focal liver lesions in question.Developments in MRI hardware and software and the availability of novel MRI contrast agents have further improved the diagnostic yield of MRI in lesion detection and characterization.Although the primary modalities for liver imaging are ultrasound and computed tomography,recent studies have suggested that MRI is the most sensitive method for detecting small liver metastatic lesions,and MRI is now considered the pre-operative standard method for diagnosis.Two recent developments in MRI sequences for the upper abdomen comprise unenhanced diffusion-weighted imaging(DWI),and keyhole-based dynamic contrast-enhanced(DCE)MRI(4D THRIVE).DWI allows improved detection(b=10 s/mm2)of small(<10 mm)focal liver lesions in particular,and is useful as a road map sequence.Also,using higher b-values,the calculation of the apparent diffusion coefficient value,true diffusion coefficient,D,and the perfusion fraction,f,has been used for the characterization of focal liver lesions.DCE 4D THRIVE enables MRI of the liver with high temporal and spatial resolution and full liver coverage.4D THRIVE improves evaluation of focal liver lesions,providing multiple arterial and venous phases,and allows the calculation of perfusion parameters using pharmacokinetic models.4D THRIVE has potential benefits in terms of detection,characterization and staging of focal liver lesions and in monitoring therapy.展开更多
Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of anti...Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of antiangiogenic therapy, evaluating tumor viability after anticancer therapy or ablation, and diagnosis of liver cirrhosis and its severity. In this review, we discuss the basic concepts of perfusion MRI using tracer kinetic modeling, the common kinetic models applied for analyses, the MR scanning techniques, methods of data processing, and evidence that supports its use from published clinical and research studies. Technical standardization and further studies will help to establish and validate perfusion MRI as a clinical imaging modality.展开更多
基金Supported by Public Welfare Projects of Science Technology Department of Zhejiang Province,No.2014C33151Medical Research Programs of Zhejiang province,No.2014KYA215,No.2015KYB398,No.2015RCA024 and No.2015KYB403Research Projects of Public Technology Application of Science and Technology of Shaoxing City,No.2013D10039
文摘AIM: To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma(HCC). METHODS: From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant(K_(trans)), plasma flow(F_p), permeability surface area product(PS), efflux rate constant(k_(ep)), extravascular extracellular space volume ratio(V_e), blood plasma volume ratio(V_p), and hepatic perfusion index(HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model(2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. RESULTS: The F_p value was greater than the PS value(F_P = 1.07 m L/m L per minute, PS = 0.19 m L/m L per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dualinput 2CXM, respectively. There were no significant differences in the K_(ep), V_p, or HPI between the dual-input extended Tofts model and the dual-input 2CXM(P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for V_e, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dualinput 2CXM were correlated with K_(trans) derived from the dual-input extended Tofts model(P = 0.002, r = 0.566; P = 0.002, r = 0.570); K_(ep), V_p, and HPI between the two kinetic models were positively correlated(P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, V_e was significantly less than that in the dual input 2CXM(P = 0.004), and no significant correlation was seen between the two tracer kinetic models(P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models(P > 0.05).CONCLUSION: A dual-input two-compartment pharmacokinetic model(a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the V_e; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.
基金supported by the Provincial Key Clinical Specialty(Medical Imaging)Development Program from Health and Family Planning Commission of Hunan Province,China(No.2015/43)the Health and Family Planning Commission of Hunan Province,China(No.B2016060)the National Key Clinical Specialty(Oncology Department)Development Program from National Health and Family Planning Commission of China(No.2013/544)
文摘Preoperative detection of lymph nodes(LNs) metastasis is always highly challenging for radiologists nowadays. The utility of quantitative dynamic contrast-enhanced magnetic resonance imaging(QDCE-MRI) in identifying LNs metastasis is not well understood. In the present study, 59 patients with histologically proven rectal carcinoma underwent preoperative QDCE-MRI. The short axis diameter ratio, long axis diameter ratio, short-to-long axis diameter ratio and QDEC-MRI parameters(Ktrans, Kep, fPV and Ve) values were compared between the non-metastatic(n=44) and metastatic(n=35) LNs groups based on pathological examination. Compared with the non-metastatic group, the metastatic group exhibited significantly higher short axis diameter(7.558±0.668 mm vs. 5.427±0.285 mm), Ktrans(0.483±0.198 min-1 vs. 0.218±0.116 min^-1) and Ve(0.399±0.118 vs. 0.203±0.096) values(all P〈0.05). The short-to-long axis diameter ratio, long axis diameter ratio, Kep and fPV values did not show significant differences between the two groups. In conclusion, our results showed that for LNs larger than 5 mm in rectal cancer, there are distinctive differences in the Ktrans and Ve values between the metastatic and non-metastatic LNs, suggesting that QDCE-MRI may be potentially helpful in identifying LNs status.
基金Supported by The National Cancer Institute/National Institutes of HealthNo.1 R01 CA115895
文摘AIM: To investigate the merits of texture analysis on parametric maps derived from pharmacokinetic modeling with dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) as imaging biomarkers for the prediction of treatment response in patients with head and neck squamous cell carcinoma(HNSCC). METHODS: In this retrospective study,19 HNSCC patients underwent pre- and intra-treatment DCEMRI scans at a 1.5T MRI scanner. All patients had chemo-radiation treatment. Pharmacokinetic modeling was performed on the acquired DCE-MRI images,generating maps of volume transfer rate(Ktrans) and volume fraction of the extravascular extracellular space(ve). Image texture analysis was then employed on maps of Ktrans and ve,generating two texture measures: Energy(E) and homogeneity.RESULTS: No significant changes were found for the mean and standard deviation for Ktrans and ve between pre- and intra-treatment(P > 0.09). Texture analysis revealed that the imaging biomarker E of ve was significantly higher in intra-treatment scans,relative to pretreatment scans(P < 0.04). CONCLUSION: Chemo-radiation treatment in HNSCC significantly reduces the heterogeneity of tumors.
文摘In many areas of oncology, dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) has proven to be a clinically useful, non-invasive functional imaging technique to quantify tumor vasculature and tumor perfusion characteristics. Tumor angiogenesis is an essential process for tumor growth, proliferation, and metastasis. Malignant lesions demonstrate rapid extravasation of contrast from the intravascular space to the capillary bed due to leaky capillaries associated with tumor neovascularity. DCE-MRI has the potential to provide information regarding blood flow, areas of hypoperfusion, and variations in endothelial permeability and microvessel density to aid treatment selection, enable frequent monitoring during treatment and assess response to targeted therapy following treatment. This review will discuss the current status of DCE-MRI in cancer imaging, with a focus on its use in imaging prostate malignancies as well as weaknesses that limit its widespread clinical use. The latest techniques for quantification of DCE-MRI parameters will be reviewed and compared.
基金supported by Beijing Natural Science Foundation(No.7122029)
文摘Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging(DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system(CNS) germ cell tumors(GCTs).Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic(ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.Results: A significant elevation in transfer constant(K^trans) and extravascular extracellular space(Ve)(P=0.000), as well as a significant reduction in rate constant(Kep)(P=0.000) was observed in tumors. K^trans, relative K^trans, and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K^trans showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value(PPV) of 95.8%, and negative predictive value(NPV) of 100%.Conclusions: Relative K^trans appeared promising in predicting tumor response to radiation therapy(RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.
文摘BACKGROUND It is of vital importance to find radiologic biomarkers that can accurately predict treatment response. Usually, the initiation of antiangiogenic therapy causes a rapid decrease in the contrast enhancing tumor. However, the treatment response is observed only in a fraction of patients due to the partial radiological response secondary to stabilization of abnormal vessels which does not essentially indicate a true antitumor effect. Perfusion-weighted magnetic resonance imaging(PWMRI) techniques have shown implicitness as a strong imaging biomarker for gliomas since they give hemodynamic information of blood vessels. Hence, there is a rapid expansion of PW-MRI related studies and clinical applications.AIM To determine the diagnostic performance of PW-MRI techniques including:(A)dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI); and(B)dynamic susceptibility contrast magnetic resonance imaging(DSC-MRI) for evaluating response to antiangiogenic therapy in patients with recurrent gliomas.METHODS Databases such as PubMed(MEDLINE included), EMBASE, and Google Scholar were searched for relevant original articles. The included studies were assessed for methodological quality with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Medical imaging follow-up or histopathological analysis was used as the reference standard. The data were extracted by two reviewers independently, and then the sensitivity, specificity, summary receiver operating characteristic curve, area under the curve(AUC), and heterogeneity were calculated using Meta-Disc 1.4 software.RESULTS This study analyzed a total of six articles. The overall sensitivity for DCE-MRI and DSC-MRI was 0.69 [95% confidence interval(CI): 0.53-0.82], and the specificity was 0.99(95%CI: 0.93-1) by a random effects model(DerSimonianeeLaird model). The likelihood ratio(LR) +, LR-, and diagnostic odds ratio(DOR)were 12.84(4.54-36.28), 0.35(0.22-0.53), and 24.44(7.19-83.06), respectively. The AUC(± SE) was 0.9921(± 0.0120), and the Q* index(± SE) was 0.9640(± 0.0323).For DSC-MRI, the sensitivity was 0.73, the specificity was 0.98, the LR+ was 7.82,the LR-was 0.32, the DOR was 31.65, the AUC(± SE) was 0.9925(± 0.0132), and the Q* index was 0.9649(± 0.0363). For DCE-MRI, the sensitivity was 0.41, the specificity was 0.97, the LR+ was 5.34, the LR-was 0.71, the DOR was 8.76, the AUC(± SE) was 0.9922(± 0.2218), and the Q* index was 0.8935(± 0.3037).CONCLUSION This meta-analysis demonstrated a beneficial value of PW-MRI(DSC-MRI and DCE-MRI) in monitoring the response of recurrent gliomas to antiangiogenic therapy, with reasonable sensitivity, specificity, +LR, and-LR.
文摘Among five types of pulmonary hypertension,chronic thromboembolic pulmonary hypertension(CTEPH)is the only curable form,but prompt and accurate diagnosis can be challenging.Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH,however these are limited by radiation exposure,subjective qualitative bias,and lack of cardiac functional assessment.This review aims to assess the methodology,diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages,limitations and future research scope.
基金supported by the Jiangsu Province Natural Science Foundation (No. BK20161291)the Nantong Science Foundation of China (No. MS2201507)the Nantong Municipal Commission of Health and Family Planning Young Fund (No. WQ2014047)
文摘Objective: To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging(DCE-MRI) with that of^18F-fluorodeoxyglucose(^18F-FDG) positron emission tomography/computed tomography(PET/CT) in the differentiation of malignant and benign solitary pulmonary nodules(SPNs).Methods: Forty-nine patients with SPNs were included in this prospective study. Thirty-two of the patients had malignant SPNs, while the other 17 had benign SPNs. All these patients underwent DCE-MRI and ^18F-FDG PET/CT examinations. The quantitative MRI pharmacokinetic parameters, including the trans-endothelial transfer constant(K^trans), redistribution rate constant(Kep), and fractional volume(Ve), were calculated using the Extended-Tofts Linear two-compartment model. The ^18F-FDG PET/CT parameter, maximum standardized uptake value(SUV(max)), was also measured. Spearman's correlations were calculated between the MRI pharmacokinetic parameters and the SUV(max) of each SPN. These parameters were statistically compared between the malignant and benign nodules. Receiver operating characteristic(ROC) analyses were used to compare the diagnostic capability between the DCE-MRI and ^18F-FDG PET/CT indexes.Results: Positive correlations were found between K^trans and SUV(max), and between K(ep) and SUV(max)(P〈0.05).There were significant differences between the malignant and benign nodules in terms of the K^trans, K(ep) and SUV(max) values(P〈0.05). The areas under the ROC curve(AUC) of K^trans) K(ep) and SUV(max) between the malignant and benign nodules were 0.909, 0.838 and 0.759, respectively. The sensitivity and specificity in differentiating malignant from benign SPNs were 90.6% and 82.4% for K^trans; 87.5% and 76.5% for K(ep); and 75.0% and 70.6%for SUV(max), respectively. The sensitivity and specificity of K^trans and K(ep) were higher than those of SUV(max), but there was no significant difference between them(P〉0.05).Conclusions: DCE-MRI can be used to differentiate between benign and malignant SPNs and has the advantage of being radiation free.
文摘The goal in brain tumor surgery is to remove the maxi-mum achievable amount of the tumor, preventing damage to "eloquent" brain regions as the amount of brain tumor resection is one of the prognostic factors for time to tumor progression and median survival. To achieve this goal, a variety of technical advances have been in-troduced, including an operating microscope in the late 1950 s, computer-assisted devices for surgical navigation and more recently, intraoperative imaging to incorporate and correct for brain shift during the resection of the lesion. However, surgically induced contrast enhancement along the rim of the resection cavity hampers interpretation of these intraoperatively acquired magnetic resonance images. To overcome this uncertainty, perfusion techniques [dynamic contrast enhanced magnetic resonance imaging(DCE-MRI), dynamic susceptibility contrast magnetic resonance imaging(DSC-MRI)] have been introduced that can differentiate residual tumor from surgically induced changes at the rim of the resec-tion cavity and thus overcome this remaining uncer-tainty of intraoperative MRI in high grade brain tumor resection.
文摘Magnetic resonance imaging(MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response.
文摘The early detection of focal liver lesions,particularly those which are malignant,is of utmost importance.The resection of liver metastases of some malignancies(including colorectal cancer)has been shown to improve the survival of patients.Exact knowledge of the number,size,and regional distribution of liver metastases is essential to determine their resectability.Almost all focal liver lesions larger than 10 mm are demonstrated with current imaging techniques but the detection of smaller focal liver lesions is still relatively poor.One of the advantages of magnetic resonance imaging(MRI)of the liver is better soft tissue contrast(compared to other radiologic modalities),which allows better detection and characterization of the focal liver lesions in question.Developments in MRI hardware and software and the availability of novel MRI contrast agents have further improved the diagnostic yield of MRI in lesion detection and characterization.Although the primary modalities for liver imaging are ultrasound and computed tomography,recent studies have suggested that MRI is the most sensitive method for detecting small liver metastatic lesions,and MRI is now considered the pre-operative standard method for diagnosis.Two recent developments in MRI sequences for the upper abdomen comprise unenhanced diffusion-weighted imaging(DWI),and keyhole-based dynamic contrast-enhanced(DCE)MRI(4D THRIVE).DWI allows improved detection(b=10 s/mm2)of small(<10 mm)focal liver lesions in particular,and is useful as a road map sequence.Also,using higher b-values,the calculation of the apparent diffusion coefficient value,true diffusion coefficient,D,and the perfusion fraction,f,has been used for the characterization of focal liver lesions.DCE 4D THRIVE enables MRI of the liver with high temporal and spatial resolution and full liver coverage.4D THRIVE improves evaluation of focal liver lesions,providing multiple arterial and venous phases,and allows the calculation of perfusion parameters using pharmacokinetic models.4D THRIVE has potential benefits in terms of detection,characterization and staging of focal liver lesions and in monitoring therapy.
基金Supported by Singapore Cancer Syndicate (SCS_CS-0072)Biomedical Research Council (BMRC 08/1/31/19/577)+1 种基金CRUK and EPSRC Cancer Imaging Centre in association with the MRC and Department of Health (England) grant C1060/A10334NHS funding to the NIHR
文摘Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of antiangiogenic therapy, evaluating tumor viability after anticancer therapy or ablation, and diagnosis of liver cirrhosis and its severity. In this review, we discuss the basic concepts of perfusion MRI using tracer kinetic modeling, the common kinetic models applied for analyses, the MR scanning techniques, methods of data processing, and evidence that supports its use from published clinical and research studies. Technical standardization and further studies will help to establish and validate perfusion MRI as a clinical imaging modality.