On the basis of shock induced experiments and the ultrasonic tests of the damaged rocks, the damage evolution relation between the attenuation coefficient of sound wave and the damage dissipated energy is described. ...On the basis of shock induced experiments and the ultrasonic tests of the damaged rocks, the damage evolution relation between the attenuation coefficient of sound wave and the damage dissipated energy is described. Based on the TCK and RDA models, a damage model which connects the shock compression and tensile damage is established. And then the damage model is implemented in LS DYNA3D dynamic nonlinear program. Numerical simulation of deep hole blasting of groove is studied by use of the damage model proposed. The rock damage evolution process and the distributing rules of stress field under the explosion load are described well fairly, which provides the theory basis for the engineering blasting design.展开更多
Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initi...Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initiation,propagation and crushing.At present,the electrical output performance of PZTs in projectile is usually calculated by quasi-static piezoelectric equation without considering the dynamic effect caused by strong impact and the influence of crack propagation on material properties.So the ignition parameters are always not accurately predicted.To tackle this,a PZT dynamic damage constitutive model considering crack propagation is established based on the dynamic impact test and the crack propagation theory of brittle materials.The model is then embedded into the ABAQUS subroutine and used to simulate the electromechanical response of the impact igniter during the impact of a small caliber projectile on the target.Meanwhile,the experiments of projectile with impact igniter impact on the target are carried out.The comparison between experimental and numerical simulation results show that the established dynamic damage model can effectively predict the dynamic electromechanical response of PZTs in the missile service environment.展开更多
By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical prop...By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.展开更多
The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Bas...The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.展开更多
The wetting-drying(W-D)cycle is a type of water–rock interaction.The pore structure of rock,such as shape,size,distribution and pore throat,affects fluid storage and transport.Fractal theory and experimental research...The wetting-drying(W-D)cycle is a type of water–rock interaction.The pore structure of rock,such as shape,size,distribution and pore throat,affects fluid storage and transport.Fractal theory and experimental research on the evolution characteristics of pore damage during the wet-dry erosion process are highly important for determining W-D damage.The mass and velocity of liquid migration are related to the pore size,porosity,fluid properties,etc.Experimental data show that the water absorption quality and velocity in rocks decrease with the number of wet-dry cycles.At the same test time,the mass and velocity of the SI water absorption method are smaller than those of the FI method.Under these two conditions,the amount and rate of water absorption represent the degree of water–rock interaction.Considering the pore evolution during the wet-dry cycling,an equation describing the motion of liquid in porous media was derived based on the imbibition-type separation model.The experimental data are in excellent agreement with the calculated values of the model.Permeability characteristics can affect the area and degree of rock deterioration as well as the development rate of pores and microcracks.Based on the interaction between permeability and pores,quantitative analysis of the weakening process(local damage)of rocks under W-D cycles can provide good reference indicators for evaluating the stability of geotechnical engineering.展开更多
文摘On the basis of shock induced experiments and the ultrasonic tests of the damaged rocks, the damage evolution relation between the attenuation coefficient of sound wave and the damage dissipated energy is described. Based on the TCK and RDA models, a damage model which connects the shock compression and tensile damage is established. And then the damage model is implemented in LS DYNA3D dynamic nonlinear program. Numerical simulation of deep hole blasting of groove is studied by use of the damage model proposed. The rock damage evolution process and the distributing rules of stress field under the explosion load are described well fairly, which provides the theory basis for the engineering blasting design.
基金supported by the National Natural Science Foundation of China(Grant No.12172232)the project of Key Laboratory of Impact and Safety Engineering(Ningbo University,China)+1 种基金Ministry of Education(CJ202206)supported by the scientific research support plan of introducing high-level talents from Shenyang Ligong University。
文摘Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initiation,propagation and crushing.At present,the electrical output performance of PZTs in projectile is usually calculated by quasi-static piezoelectric equation without considering the dynamic effect caused by strong impact and the influence of crack propagation on material properties.So the ignition parameters are always not accurately predicted.To tackle this,a PZT dynamic damage constitutive model considering crack propagation is established based on the dynamic impact test and the crack propagation theory of brittle materials.The model is then embedded into the ABAQUS subroutine and used to simulate the electromechanical response of the impact igniter during the impact of a small caliber projectile on the target.Meanwhile,the experiments of projectile with impact igniter impact on the target are carried out.The comparison between experimental and numerical simulation results show that the established dynamic damage model can effectively predict the dynamic electromechanical response of PZTs in the missile service environment.
基金Supported by the National Key Technologies Research&Development Program(2017YFC0804607)the National Key Basic Research Development Plan(973 Proect)(2014CB047000)
文摘By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.
基金Project(2006BAB02A02)supported by the National Key Technology R&D Program for the 11th Five-year Plan of ChinaProject(09JJ4025)supported by the National Natural Science Foundation of Hunan Province,ChinaProject(51074178)supported by the National Natural Science Foundation of China
文摘The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.
基金supported by the National Natural Science Foundation of China(Nos.52364004,52264006,52064006,and 52164001)the Guizhou Provincial Science and Technology Foundation(No.GCC[2022]005-1).
文摘The wetting-drying(W-D)cycle is a type of water–rock interaction.The pore structure of rock,such as shape,size,distribution and pore throat,affects fluid storage and transport.Fractal theory and experimental research on the evolution characteristics of pore damage during the wet-dry erosion process are highly important for determining W-D damage.The mass and velocity of liquid migration are related to the pore size,porosity,fluid properties,etc.Experimental data show that the water absorption quality and velocity in rocks decrease with the number of wet-dry cycles.At the same test time,the mass and velocity of the SI water absorption method are smaller than those of the FI method.Under these two conditions,the amount and rate of water absorption represent the degree of water–rock interaction.Considering the pore evolution during the wet-dry cycling,an equation describing the motion of liquid in porous media was derived based on the imbibition-type separation model.The experimental data are in excellent agreement with the calculated values of the model.Permeability characteristics can affect the area and degree of rock deterioration as well as the development rate of pores and microcracks.Based on the interaction between permeability and pores,quantitative analysis of the weakening process(local damage)of rocks under W-D cycles can provide good reference indicators for evaluating the stability of geotechnical engineering.