A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SV...A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.展开更多
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric...Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss.展开更多
With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning te...With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.展开更多
To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior ...To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification.展开更多
Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the main challenge is in the choice of the appropriate model for exploring the data features. The choi...Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the main challenge is in the choice of the appropriate model for exploring the data features. The choice is generally poorly understood and any tentative choice may be too restrictive. Growing volumes of data, disparate data sources and modelling techniques entail the need for model optimization via adaptability rather than comparability. We propose a novel two-stage algorithm to modelling continuous data consisting of an unsupervised stage whereby the algorithm searches through the data for optimal parameter values and a supervised stage that adapts the parameters for predictive modelling. The method is implemented on the sunspots data with inherently Gaussian distributional properties and assumed bi-modality. Optimal values separating high from lows cycles are obtained via multiple simulations. Early patterns for each recorded cycle reveal that the first 3 years provide a sufficient basis for predicting the peak. Multiple Support Vector Machine runs using repeatedly improved data parameters show that the approach yields greater accuracy and reliability than conventional approaches and provides a good basis for model selection. Model reliability is established via multiple simulations of this type.展开更多
Post-translational modification (PTM) increases the functional diversity of proteins by introducing new functional groups to the side chain of amino acid of a protein. Among all amino acid residues, the side chain of ...Post-translational modification (PTM) increases the functional diversity of proteins by introducing new functional groups to the side chain of amino acid of a protein. Among all amino acid residues, the side chain of lysine (K) can undergo many types of PTM, called K-PTM, such as “acetylation”, “crotonylation”, “methylation” and “succinylation” and also responsible for occurring multiple PTM in the same lysine of a protein which leads to the requirement of multi-label PTM site identification. However, most of the existing computational methods have been established to predict various single-label PTM sites and a very few have been developed to solve multi-label issue which needs further improvement. Here, we have developed a computational tool termed mLysPTMpred to predict multi-label lysine PTM sites by 1) incorporating the sequence-coupled information into the general pseudo amino acid composition, 2) balancing the effect of skewed training dataset by Different Error Cost method, and 3) constructing a multi-label predictor using a combination of support vector machine (SVM). This predictor achieved 83.73% accuracy in predicting the multi-label PTM site of K-PTM types. Moreover, all the experimental results along with accuracy outperformed than the existing predictor iPTM-mLys. A user-friendly web server of mLysPTMpred is available at http://research.ru.ac.bd/mLysPTMpred/.展开更多
The maximum entropy model was introduced and a new intrusion detection approach based on the maximum entropy model was proposed. The vector space model was adopted for data presentation. The minimal entropy partitioni...The maximum entropy model was introduced and a new intrusion detection approach based on the maximum entropy model was proposed. The vector space model was adopted for data presentation. The minimal entropy partitioning method was utilized for attribute diseretization. Experiments on the KDD CUP 1999 standard data set were designed and the experimental results were shown. The receiver operating eharaeteristie(ROC) curve analysis approach was utilized to analyze the experimental results. The analysis results show that the proposed approach is comparable to those based on support vector maehine(SVM) and outperforms those based on C4.5 and Naive Bayes classifiers. According to the overall evaluation result, the proposed approach is a little better than those based on SVM.展开更多
基金National High Technology Research andDevelopment Program of China( Project 863 G2 0 0 1AA413 13 0
文摘A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.
基金This study stemmed from a research project(code number:96000838)which was sponsored by the Institute for Futures Studies in Health at Kerman University of Medical Sciences.
文摘Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss.
基金supported by the National Natural Science Foundation of China(No.U1960202)。
文摘With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.
基金Sponsored by the Beijing Municipal Natural Science Foundation(4082027)
文摘To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification.
文摘Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the main challenge is in the choice of the appropriate model for exploring the data features. The choice is generally poorly understood and any tentative choice may be too restrictive. Growing volumes of data, disparate data sources and modelling techniques entail the need for model optimization via adaptability rather than comparability. We propose a novel two-stage algorithm to modelling continuous data consisting of an unsupervised stage whereby the algorithm searches through the data for optimal parameter values and a supervised stage that adapts the parameters for predictive modelling. The method is implemented on the sunspots data with inherently Gaussian distributional properties and assumed bi-modality. Optimal values separating high from lows cycles are obtained via multiple simulations. Early patterns for each recorded cycle reveal that the first 3 years provide a sufficient basis for predicting the peak. Multiple Support Vector Machine runs using repeatedly improved data parameters show that the approach yields greater accuracy and reliability than conventional approaches and provides a good basis for model selection. Model reliability is established via multiple simulations of this type.
文摘探究教师注意力对于评估课堂教师行为具有极其重要的研究价值。然而,现有的教师注意力识别算法存在无法应对极端头部姿态角度等问题。为此,提出一种基于6DRep Net360模型的教师注意力状态识别算法,提升极端角度中头部姿态估计算法的准确性。相较于传统的依赖条件判断来分类教师注意力状态的方法,设计一种基于支持向量机(SVM)的教师注意力分类模型,对复杂头部姿态角度进行注意力状态的精准识别。为进一步解决算法稳定性和准确性带来的误差数据,提出基于滑动窗口的数据清洗算法,有效提高整体识别结果的真实性和可靠性。通过在构建的CCNUTeacherS tat e数据集上进行一系列的算法评估,实验结果表明,所提出的教师注意力识别算法在CCNUTeacherS tate数据集上达到了90.67%的准确率。
文摘Post-translational modification (PTM) increases the functional diversity of proteins by introducing new functional groups to the side chain of amino acid of a protein. Among all amino acid residues, the side chain of lysine (K) can undergo many types of PTM, called K-PTM, such as “acetylation”, “crotonylation”, “methylation” and “succinylation” and also responsible for occurring multiple PTM in the same lysine of a protein which leads to the requirement of multi-label PTM site identification. However, most of the existing computational methods have been established to predict various single-label PTM sites and a very few have been developed to solve multi-label issue which needs further improvement. Here, we have developed a computational tool termed mLysPTMpred to predict multi-label lysine PTM sites by 1) incorporating the sequence-coupled information into the general pseudo amino acid composition, 2) balancing the effect of skewed training dataset by Different Error Cost method, and 3) constructing a multi-label predictor using a combination of support vector machine (SVM). This predictor achieved 83.73% accuracy in predicting the multi-label PTM site of K-PTM types. Moreover, all the experimental results along with accuracy outperformed than the existing predictor iPTM-mLys. A user-friendly web server of mLysPTMpred is available at http://research.ru.ac.bd/mLysPTMpred/.
基金Supported bythe National Research Foundationforthe Doctoral Program of Higher Education of China(20030145029) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry ofEducation
文摘The maximum entropy model was introduced and a new intrusion detection approach based on the maximum entropy model was proposed. The vector space model was adopted for data presentation. The minimal entropy partitioning method was utilized for attribute diseretization. Experiments on the KDD CUP 1999 standard data set were designed and the experimental results were shown. The receiver operating eharaeteristie(ROC) curve analysis approach was utilized to analyze the experimental results. The analysis results show that the proposed approach is comparable to those based on support vector maehine(SVM) and outperforms those based on C4.5 and Naive Bayes classifiers. According to the overall evaluation result, the proposed approach is a little better than those based on SVM.