期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Dynamic Elastic Modulus of Cement Paste at Early Age based on Nondestructive Test and Multiscale Prediction Model 被引量:1
1
作者 赵海涛 黄冬辉 +1 位作者 WANG Xiaojun CHEN Xudong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期321-328,共8页
This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of c... This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of cement paste was investigated, in which three kinds of admixtures were taken into account including viscosity modifying admixture (VMA), silica.fume (SF), and shrinkage-reducing admixture (SRA). The experimental results indicate that the dynamic elastic modulus of cement paste increases with decreasing water-cement ratio. The addition of SF increases the dynamic elastic modulus, however, the overdosage of VMA causes its reduction. SRA reduces the dynamic elastic modulus at early age without affecting it in later period. Finally, a multiscale micromechanics approach coupled with a hydration model CEMHYD3D and percolation theory is utilized to predict the elastic modulus of cement paste, and the predictive results by the model are in accordance with the experimental data. 展开更多
关键词 dynamic elastic modulus nondestructive test viscosity modifying admixture silica fume shrinkage-reducing admixture multiscale model
下载PDF
Low embankment dynamic response under vehicle traffic loads in arid-oasis areas
2
作者 WAN Qi YANG Xiao-hua +1 位作者 YIN Pei-jie BAO Han 《Journal of Mountain Science》 SCIE CSCD 2020年第7期1776-1789,共14页
The use of low embankments is of significant concern for ecological protection in aridoasis areas.Based on the project of Sansha Expressway located in Kashgar City,Xinjiang,China,physical model tests were conducted in... The use of low embankments is of significant concern for ecological protection in aridoasis areas.Based on the project of Sansha Expressway located in Kashgar City,Xinjiang,China,physical model tests were conducted in this study to investigate the dynamic response of the low embankment as per the effects of road structure,load amplitude,load frequency,load cycle,and moisture content.The dynamic stress is shown to increase with load amplitude while the dynamic elastic modulus decreases with load amplitude under short-term loading.The load frequency slightly influences the soil’s dynamic behavior;higher frequencies can improve the dynamic elastic modulus of the subgrade soil.The moisture content has greater influence on the mechanical properties of the subsoil than that of subgrade layer.The subgrade bears the majority of the traffic load as the stress dissipates to 37%of the whole value on its surface.The number of load cycles has the greatest effect on the dynamic response among the influencing factors tested.The dynamic elastic modulus with the type of long-term dynamic loading is only 40%-52%of that with static loading across the entire depth range.The dynamic stress shows significant accumulation with load cycles over the long-term dynamic loading test and becomes stable after 8×10~4 cycles of loading.An equation is established to quantify the cumulative dynamic stress in the low embankment under long-term dynamic loading conditions. 展开更多
关键词 Low embankment dynamic response Model test Moisture content dynamic elastic modulus Cumulative dynamic stress
下载PDF
Detection of Frost-Resistance Property of Large-Size Concrete Based on Impact-Echo Method
3
作者 Qi Feng Zhengyue Ren Dan Wang 《Structural Durability & Health Monitoring》 EI 2023年第1期71-88,共18页
The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resona... The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resonance method was used to detect the Ed,resulting in a limitation for field tests.The impact-echo method can make up defects of traditional detection methods for frost-resistance testing,such as the evaluation via the loss of mass or strength.The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site.Results show that the impact-echo method can replace the traditional resonance frequency method to evaluate the frost resistance of concrete,and has advantages of high accuracy,easy to operate,and not affecting by the aggregate size and size effect of samples.The dynamic elastic modulus of concrete detected by the impact-echo method has little difference with that obtained by the traditional resonance method.The one-dimensional elastic wave velocity of concrete has a good linear correlation with the transverse resonance frequency.The freeze-thaw damage occurred from the surface to the inner layer,and the surface is expected to be the most vulnerable part for the freeze-thaw damage.It is expected to monitor and track the degradation of the frost resistance of an actual structure by frequently detecting the P-wave velocity on site,which avoids coring again. 展开更多
关键词 Impact-echo method frost-resistance property dynamic elastic modulus ED elastic wave velocity transverse resonance frequency
下载PDF
Brine-freeze-thaw Durability and Crack Density Model of Concrete in Salt Lake Region 被引量:5
4
作者 巩位 余红发 +1 位作者 MA Haiyan HAN Wenliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期561-570,共10页
The brine-freeze-thaw durability (defined as the durability under freeze-thaw cycles in Qinghai salt lake brine) of concrete (ordinary Portland cement concrete (OPC), high performance concrete (HPC-a), high performanc... The brine-freeze-thaw durability (defined as the durability under freeze-thaw cycles in Qinghai salt lake brine) of concrete (ordinary Portland cement concrete (OPC), high performance concrete (HPC-a), high performance concrete with steel fiber (HPC-b), and high performance concrete with high Young's modulus polyethylene fiber (HPC-c)) was systematically investigated by the relative dynamic elastic modulus, the relative mass, the appearance, the scanning electron microscopy, and the X-ray diffraction. In addition, the low-temperature physical and chemical corrosion mechanism and a crack density model after the modified relative dynamic elastic modulus being taken into consideration were proposed. The results show that the deterioration of OPC is the severest, followed by HPC-a, HPC-c and HPC-b. The admixture or the fiber is mixed into concrete, which can improve the brine-freeze-thaw durability of concrete. The critical mass growth of the failure of concrete is 3.7%. The cause of the deterioration of concrete under the brine-freeze-thaw cycles is physical and chemical corrosion, not freezing and thawing. The crack density model can effectively describe the deterioration evolution of concrete. 展开更多
关键词 brine-freeze-thaw durability relative dynamic elastic modulus relative mass micro-analysis modeling
下载PDF
Evaluating Deterioration of Concrete by Sulfate Attack 被引量:3
5
作者 龙广成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期572-576,共5页
Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfat... Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared. 展开更多
关键词 sulfate attack STRENGTH relative dynamic elastic modulus PERMEABILITY CONCRETE
下载PDF
Durability of Concrete with Different Improvement Measures and Its Ser-vice Life Prediction in Island and Reef Environment
6
作者 GONG Wei YU Hong-fa +2 位作者 MA Hai-yan WANG Nan ZHU Hai-wei 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期947-958,共12页
To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were us... To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were used as the influence factors,while the relative dynamic elastic modulus was used as the evaluation index.In addition,the law and time variability of the deterioration of concrete,the size effect,environmental similarity and the service life model were studied.The results showed that improving the strength grade of concrete could improve the durability of concrete,and corrosion inhibitor could slightly improve the durability of concrete.Time-varying law of the deterioration of concrete conformed to the univariate quadratic polynomial.Combined with the concrete damage equivalent theory,a size effect model based on the relative dynamic elastic modulus was proposed and verified,and the size effect coefficient was also given.An environmental similarity model between simulated and practical island and reef environment was proposed.Combined with the reliability theory and the first order second moment method,a new service life model of concrete structure was proposed.The authors were convinced that the research will be advantageous to researchers. 展开更多
关键词 island and reef environment relative dynamic elastic modulus size effect environmental similarity service life model
下载PDF
Natural durability of wood of ten native species from northeastern Mexico
7
作者 Artemio CARRILLO Rahim FOROUGHBACHK +2 位作者 Verónica BUSTAMANTE Christian WEHENKEL Humberto GONZáLEZ 《Forestry Studies in China》 CAS 2013年第2期160-166,共7页
Thorn scrub vegetation in Mexico is distributed over 50 million ha, where native tree species are the source of forage, timber, firewood and charcoal. Research describing wood durability of species from this vegetatio... Thorn scrub vegetation in Mexico is distributed over 50 million ha, where native tree species are the source of forage, timber, firewood and charcoal. Research describing wood durability of species from this vegetation type has not been fully determined, nor classified according to international standards. Thus, the aim of this study was to determine and classify the natural durability of ten woody species. Their natural durability was determined according to the European Pre-Norm 807, the loss of dynamic modulus of elasticity (MOEdyo) (MPa) was determined and wood mass loss (g) after being exposed to Trametes versicolor and Coniophora puteana fungi. Wood durability was classified accord- ing to the European Norm 350-1. Highly significant differences (p 〈 0.001) were found between the durability of woody species. The more durable species with lower MOEdyn lost were Condalia hooked (57.5% ± 0.6%), Havardia pallens (58.2% ± 0.4%) and Acacia schaffneri (58.9% ±6.3%). Species with lower mass loss after exposed to Coniophora puteana were Ebenopsis ebano (6.3% ±1.9%), Condalia hooked (8.6% ±2.3%) and Cordia boissieri (11.8% ±2.3%). E. ebano (7.1% ±2.4%), Condalia hooked (8.2% ± 2.5%) and Cordia boissieri (11.5% ± 3.1%) showed the lower mass lost after exposed to T. versicolor. According to European Norm 350-1, three woody species were classified as very durable and durable species. 展开更多
关键词 native species natural durability dynamic modulus of elasticity mass loss
下载PDF
Freeze-thaw Resistance of Concrete in Seawater 被引量:1
8
作者 SHUI Z H XU H G ZHAN B J 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第17期108-111,共4页
The effect of freeze-thaw cycles in seawater on the performance of concrete was studied in this paper. Concrete samples with different water binder ratio and different component were prepared,and were then put into fr... The effect of freeze-thaw cycles in seawater on the performance of concrete was studied in this paper. Concrete samples with different water binder ratio and different component were prepared,and were then put into fresh water and synthesized seawater. After the experiments of freeze-thaw cycles,the mass loss,relative dynamic elastic modulus (RDEM) and compressive strength of each sample were tested. The results obtained reveal that with the increase of the water binder ratio,the resistance ability of freeze-thaw impact in seawater of concrete decrease dramatically. When the concrete contain 15% fly ash and 20% slag,its resistance ability to the freeze-thaw impact in seawater is the optimal. Compared to the seawater corrosion,the impact of freeze-thaw cycles to the properties of concrete is severer. 展开更多
关键词 freeze-thaw damage seawater mass loss relative dynamic elastic modulus
原文传递
Experimental Study on Mechanical Properties of Weathered Rock Covered by Loess 被引量:2
9
作者 王平 吴志坚 +2 位作者 王峻 张泽忠 王谦 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期719-723,共5页
Based on dynamic triaxial test, the mechanical properties of the weathered rock covered by loess were studied. The cohesion value of weathered mudstone is far below that of the weathered sandstone, while the internal ... Based on dynamic triaxial test, the mechanical properties of the weathered rock covered by loess were studied. The cohesion value of weathered mudstone is far below that of the weathered sandstone, while the internal friction angle values are basically equivalent, about 30. Compared with the undisturbed sample, the cohesion value of remodeling weathered rock sample decreases significantly. With the increase of moisture content, the strength of weathered mudstone is obviously decreased due to the influence of the water softening efect. This results illustrate that the bearing stratum is not easily afected by external disturbance in comparison to weathered mudstone. In the engineering, in order to ensure the good mechanical properties of the soil, more attention should be paid to keeping the water content constant, even to reducing the water content. The experiments show that the relations between shear stress and strain of weathered rock were nonlinear and the behavior of weathered rock can be expressed by the hyperbolic model. The initial modulus of undisturbed weathered rock, under the same consolidation conditions, is much greater than that of remodeling samples. Meanwhile, the initial dynamic elastic modulus of sandstone is also greater than that of the mudstone. The dynamic shear modulus ratios of the undisturbed sandstone, the undisturbed mudstone, as well as the remodeling mudstone have the normalization characteristics with the increase of dynamic shear strain. The damping ratio of mudstone is larger than that of the sandstone, and the damping ratio of remolding sample is also greater than that of the undisturbed mudstone. The mudstone has the bad mechanical properties as bearing stratum. 展开更多
关键词 weathered rock mechanical characteristics dynamic elasticity modulus damping ratio COHESION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部