期刊文献+
共找到1,187篇文章
< 1 2 60 >
每页显示 20 50 100
Micro defects formation and dynamic response analysis of steel plate of quasi-cracking area subjected to explosive load
1
作者 Zheng-qing Zhou Ze-chen Du +5 位作者 Xiao Wang Hui-ling Jiang Qiang Zhou Yu-long Zhang Yu-zhe Liu Pei-ze Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期580-593,共14页
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin... As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center. 展开更多
关键词 explosive load Quasi-cracking area Micro defects Steel plate dynamic response Numerical simulation
下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load
2
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 explosive load Q345 steel Micro defect Finite element simulation dynamic response Data fitting
下载PDF
Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion 被引量:16
3
作者 Yubing Yang Xiongyao Xie Rulu Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期373-384,共12页
To evaluate the effects of possible ground explosion on a shallow-buried metro tunnel, this paper attempts to analyze the dynamic responses of the operating metro tunnel in soft soil, using a widely applied explicit d... To evaluate the effects of possible ground explosion on a shallow-buried metro tunnel, this paper attempts to analyze the dynamic responses of the operating metro tunnel in soft soil, using a widely applied explicit dynamic nonlinear finite element software ANSYS/LS-DYNA. The blast induced wave propagation in the soil and the tunnel, and the von Mises effective stress and acceleration of the tunnel lining were presented, and the safety of the tunnel lining was evaluated based on the failure criterion. Besides, the parametric study of the soil was also carried out. The numerical results indicate that the upper part of the tunnel lining cross-section with directions ranging from 0° to 22.5° and horizontal distances 0 to 7 m away from the explosive center are the vulnerable areas, and the metro tunnel might be safe when tunnel depth is more than 7 m and TNT charge on the ground is no more than 500 kg, and the selection of soil parameters should be paid more attentions to conduct a more precise analysis. 展开更多
关键词 ground surface explosion numerical simulation metro tunnel dynamic response
下载PDF
Dynamic responses of reinforced concrete beams under double-endinitiated close-in explosion 被引量:4
4
作者 Bin Rao Li Chen +3 位作者 Qin Fang Jian Hong Zhong-xian Liu Heng-bo Xiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期527-539,共13页
The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on... The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on the structural component and may cause both local and structural failure. In this study,an experimental study was conducted to investigate the dynamic responses of RC beams under doubleend-initiated close-in explosions. The experimental results show that the distribution of blast loads generated by the double-end-initiated explosion is much more non-uniform than those generated by single-point detonation, which is caused by the self-Mach-reflection effects. A 3 D finite element model was developed and validated in LS-DYNA by employing the modified K&C model. Intensive numerical calculations were conducted to study the influences of the initiation way, scaled distance and longitudinal reinforcement ratio on the dynamic responses and failure modes of RC beams. Numerical results show that the RC beam suffers greater damage as the cylindrical explosive is detonated at its double ends than the scenario in which the cylindrical explosive is detonated at its central point. RC beams mainly suffer flexural failure and flexure-shear failure under the double-end close-in explosion, and the failure modes of RC beams change from the flexural damage to flexure-shear damage as the scaled distance or the longitudinal reinforcement ratio decreases. The direct shear failure mode is not usually observed in the double-end-initiated explosion, since the intense blast loads is basically concentrated in the midspan of RC beam, which is due to self-Mach-reflection enhancement. 展开更多
关键词 REINFORCED concrete(RC)beam Close-in explosion Failure mode dynamic response Double-end-initiation
下载PDF
Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions 被引量:4
5
作者 Tie-shuan Zhuang Ming-yang Wang +3 位作者 Jun Wu Cheng-yu Yang Tao Zhang Chao Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期856-875,共20页
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se... Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application. 展开更多
关键词 Underwater explosion Reinforced concrete(RC)columns Load distribution characteristics dynamic response Damage models
下载PDF
An Analytical Solution for Dynamic Response of the Plate with Different Impedances Subjected to Underwater Explosion 被引量:1
6
作者 陈莹玉 姚熊亮 肖巍 《China Ocean Engineering》 SCIE EI CSCD 2016年第3期329-342,共14页
In this paper, the transmitted part of the incident wave is considered to revise Taylor's solution, which is used to extend its application for analytical models to predict the response of the plate with different ma... In this paper, the transmitted part of the incident wave is considered to revise Taylor's solution, which is used to extend its application for analytical models to predict the response of the plate with different material properties. The influence of the material properties and the boundary condition of the plate on fluid and structural dynamics is systematically investigated. The analytical results are compared with those of detailed dynamic FE simulations and the two are in good agreement. The results indicate that the analytical method is valid and suitable for the plates with different material properties subjected to underwater explosion. It is found that Taylor's results of the plate with small impedance are invalid, which indicates a potential application field for the analytical method. 展开更多
关键词 underwater explosion analytical solution different impedances dynamic response
下载PDF
Experimental and Numerical Investigations of the Dynamic Response of Ring-Stiffened Cylinder Subjected to Underwater Explosion 被引量:1
7
作者 朱锡 张振华 +3 位作者 冯刚 李玉节 刘建湖 何斌 《Journal of Beijing Institute of Technology》 EI CAS 2004年第3期346-350,共5页
Experimental and numerical investigations were carried out on the free-free end ring-stiffened cylinder subjected to underwater explosion loading. Numerical analysis was carried out by using the MSC.DYTRAN finite elem... Experimental and numerical investigations were carried out on the free-free end ring-stiffened cylinder subjected to underwater explosion loading. Numerical analysis was carried out by using the MSC.DYTRAN finite element code and the results were compared with experiment results. General coupling was used to simulate the interaction between fluid and structure. The strain rate effect, geometric nonlinearity and initial abnormity in shape were considered. The effective plastic stress and the strain of shell between ribs on different locations were compared and damage mechanism were analyzed.. 展开更多
关键词 underwater explosion ring-stiffened cylinder nonlinear dynamic response
下载PDF
Dynamic Response of Floating Body Subjected to Underwater Explosion Bubble and Generated Waves with 2D Numerical Model 被引量:1
8
作者 Zhaoli Tian Yunlong Liu +2 位作者 Shiping Wang A Man Zhang Youwei Kang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期397-423,共27页
The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively... The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively,a two-dimensional underwater explosion bubble dynamics model,based on the potential flow theory,is established with a double-vortex model for the doubly connected bubble dynamics simulation,and the bubble shows similar dynamics to that in 3-dimensional domain.A fully nonlinear fluid-structure interaction model is established considering the rigid motion of the floating body using the mode-decomposition method.Convergence test of the model is implemented by simulating the free rolling motion of a floating body in still water.Through the simulation of the interaction of the underwater explosion bubble,the generated waves and the floating body based on the presented model,the influences of the buoyancy parameter and the distance parameter are discussed.It is found that the impact loads on floating body caused by underwater explosion bubble near the free surface can be divided into 3 components:bubble pulsation,jet impact,and slamming load of the generated waves,and the intensity of each component changes nonlinearly with the buoyance parameter.The bubble pulsation load decays with the increase in the horizontal distance.However,the impact load from the generated waves is not monotonous to distance.It increases with the distance within a particular distance threshold,but decays thereafter. 展开更多
关键词 UNDERWATER explosion BUBBLE dynamicS fluid-structure INTERACTION double-vortex model WAVES GENERATED by UNDERWATER explosion.
下载PDF
Study on dynamic response of multi-degree-of-freedom explosion vessel system under impact load 被引量:1
9
作者 Yun-hao Hu Wen-bin Gu +4 位作者 Jian-qing Liu Jing-lin Xu Xin Liu Yang-ming Han Zhen-xiong Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期777-786,共10页
In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic fou... In order to study the dynamic response and calculate the axial dynamic coefficient of the monolayer cylindrical explosion vessel,the wall of vessel is simplified as a multi-degree-of-freedom(MDoF) undamped elastic foundation beam.Decoupling the coupled motion equation and using Duhamel's integrals,the solutions in generalized coordinates of the equations under exponentially decaying loads,square wave loads and triangular wave loads are calculated.These solutions are consistent in form with the solutions of single-degree-of-freedom(SDoF) undamped forced vibration simplified model.Based on the model,equivalent MDoF design method(also called MDoF dynamic coefficient method) of cylindrical explosion vessel is proposed.The traditional method can only predict the dynamic coefficient of torus portion around the explosion center,but this method can predict that of the vessel wall at any axial n dividing point position.It is verified that the prediction accuracy of this model is greatly improved compared with the SDoF model by comparing the results of this model with SDoF model and numerical simulation in different working conditions.However,the prediction accuracy decreases as the scaled distance decreases and approaches the end of the vessel,which is related to the accuracy of the empirical formula of the implosion load,the simplification of the explosion load direction,the boundary conditions,and the loading time difference. 展开更多
关键词 explosion vessel dynamic response Vibration analysis dynamic coefficient Load feature
下载PDF
Three-dimensional coordinates test method with uncertain projectile proximity explosion position based on dynamic seven photoelectric detection screen 被引量:2
10
作者 Han-shan Li Xiao-qian Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1643-1652,共10页
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ... To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters. 展开更多
关键词 dynamic multi-screen array plane Flash photoelectric detection target Projectile signal processing Particle swarm Proximity explosion fuze Three-dimensional coordinate
下载PDF
Dynamic responses of deep underground explosions based on improved Grigorian model 被引量:1
11
作者 陈万祥 范新 +1 位作者 郭志昆 王明洋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期323-331,共9页
It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on th... It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles. 展开更多
关键词 塑料模型 地下爆炸 动态响应 岩石颗粒 计算结果 径向应力 径向位移 粒子速度
下载PDF
Dynamic Response of the U-Typed Sandwich Panel Under Explosion Load Based on the SDOF Method
12
作者 LIU Kun GAO Yu +1 位作者 ZHAO Chen-shui WANG Ze-ping 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期814-826,共13页
Sandwich panel is commonly used in ship and marine engineering equipment,such as side structure and superstructure deck of a ship,which is of good anti-explosion performance.This paper addresses a study on the dynamic... Sandwich panel is commonly used in ship and marine engineering equipment,such as side structure and superstructure deck of a ship,which is of good anti-explosion performance.This paper addresses a study on the dynamic response of the U-typed sandwich panel under explosion load through the numerical simulation and theoretical methods.Based on the orthotropic plate theory,the U-typed sandwich panel is simplified and transformed into a single degree of freedom(SDOF)spring system,the equivalent motion equation of the SDOF system and the expression of triangular explosion load function are established based on the SDOF theory,and the maximum response spectrum of the SDOF system is obtained.Then,the response of the equivalent SDOF system of the U-typed sandwich panel under explosion load is analyzed,and the theoretical results match well with the numerical simulation results,which verifies the accuracy of the theoretical method proposed in this paper.The theoretical method proposed in this paper could have good engineering applications for the structural anti-explosion design,and provide a reference for the evaluation of the anti-explosion performance of ship and offshore platform structures. 展开更多
关键词 U-typed sandwich panel the orthotropic plate theory oil and gas explosion SDOF method dynamic response
下载PDF
A simplified approach to modelling blasts in computational fluid dynamics (CFD)
13
作者 D.Mohotti K.Wijesooriya S.Weckert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期19-34,共16页
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e... This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds. 展开更多
关键词 Blast loads Computational fluid dynamics explosions Numerical simulations
下载PDF
Blast resistance of air-backed RC slab against underwater contact explosion
14
作者 Guang-dong Yang Yong Fan +3 位作者 Gao-hui Wang Xian-ze Cui Zhen-dong Leng Wen-bo Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期236-250,共15页
Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab a... Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab. 展开更多
关键词 Air-backed RC slab Underwater contact explosion dynamic behavior Parametric study Numerical simulation
下载PDF
Quantitative prediction and ranking of the shock sensitivity ofexplosives via reactive molecular dynamics simulations 被引量:2
15
作者 Kun Yang Lang Chen +3 位作者 Dan-yang Liu De-shen Geng Jian-ying Lu Jun-ying Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期843-854,共12页
A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simu... A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simulation models for high-speed piston impacts on explosive supercells were established.Simulations were also performed to investigate shock-induced reactions of various high-energy explosives.The fraction of reacted explosive molecules in an initial supercell changed linearly with the propagation distance of the shock-wave front.The corresponding slope could be used as a reaction rate for a specific shock-loading velocity.Reaction rates that varied with the shock-loading pressure exhibited two-stage linearities with different slopes.The two inflection points corresponded to the initial and accelerated reactions,which respectively correlated to the thresholds of shock-induced ignition and detonation.Therefore,the ignition and detonation critical pressures could be determined.The sensitivity could then be a quantitative prediction of the critical pressure.The accuracies of the quantitative shock sensitivity predictions were verified by comparing the impact and shock sensitivities of common explosives and the characteristics of anisotropic shock-induced reactions.Molecular dynamics simulations quantitatively predict and rank shock sensitivities by using only crystal structures of the explosives.Overall,this method will enable the design and safe use of explosives. 展开更多
关键词 explosIVE Shock sensitivity Quantitative prediction Reactive molecular dynamics simulation
下载PDF
Shock-induced energy localization and reaction growth considering chemical-inclusions effects for crystalline explosives
16
作者 Ruqin Liu Yanqing Wu +3 位作者 Xinjie Wang Fenglei Huang Xiaona Huang Yushi Wen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期278-294,共17页
Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall phy... Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall physical responses,and reactions in a-1,3,5-trinitro-1,3,5-triazinane(a-RDX)crystal entrained various chemical inclusions were investigated by the multi-scale shock technique implemented in the reactive molecular dynamics method.Results indicated that energy localization and shock reaction were affected by the intrinsic factors within chemical inclusions,i.e.,phase states,chemical compositions,and concentrations.The atomic origin of chemical-inclusions effects on energy localization is dependent on the dynamics mechanism of interfacial molecules with free space volume,which includes homogeneous intermolecular compression,interfacial impact and shear,and void collapse and jet.As introducing various chemical inclusions,the initiation of those dynamics mechanisms triggers diverse decay rates of bulk RDX molecules and hereby impacts on growth speeds of final reactions.Adding chemical inclusions can reduce the effectiveness of the void during the shock impacting.Under the shockwave velocity of 9 km/s,the parent RDX decay rate in RDX entrained amorphous carbon decreases the most and is about one fourth of that in RDX with a vacuum void,and solid HMX and TATB inclusions are more reactive than amorphous carbon but less reactive than dry air or acetone inclusions.The lessdense shocking system denotes the greater increases in local temperature and stress,the faster energy liberation,and the earlier final reaction into equilibrium,revealing more pronounced responses to the present intense shockwave.The quantitative models associated with the relative system density(RD_(sys))were proposed for indicating energy-localization mechanisms and evaluating initiation safety in the shocked crystalline explosive.RD_(sys)is defined by the density ratio of defective RDX to perfect crystal after dynamics relaxation and reveals the global density characteristic in shocked systems filled with chemical inclusions.When RD_(sys)is below 0.9,local hydrodynamic jet initiated by void collapse dominates upon energy localization instead of interfacial impact.This study sheds light on novel insights for understanding the shock chemistry and physical-based atomic origin in crystalline explosives considering chemical-inclusions effects. 展开更多
关键词 Shock responses Energy localization Crystalline explosives Chemical inclusions Reactive molecular dynamics
下载PDF
Analysis of Dynamic Response of Explosive Disposal Robot to Rough Road Excitation
17
作者 MO Haijun HUANG Ping HU Qingchun DUAN Fuhai (College of Mechanical Engineering,South China University of Technology,Guangzhou 510640,China 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S2期513-516,共4页
When the explosive disposal robot traveling over a rough road,it will shake up and down,and generates dynamic loads.Furthermore,the jolt of the explosive disposal robot will result in oscillation and large inertia for... When the explosive disposal robot traveling over a rough road,it will shake up and down,and generates dynamic loads.Furthermore,the jolt of the explosive disposal robot will result in oscillation and large inertia forces of the explosive,and will effect the stability of the grasped explosive,even cause the explosive slipping from the claw and falling to the ground,which seriously threats the saJety of the robot and around environment.A tracked explosive dispasal robot has been developed at South Chi- na University of Technology.This paper takes the explosive disposal robot and the grasped explosive as study object.Especially fo- cuses on the response analysis of the grasped explosive when the robot traveling over a rough road.Analyzing the vibration character- istic of the explosive and the effects of the robot moving speeds on the stability of the explosive.The dynamic response of the explosive is obtained by simulation,the results show that the velocity of the robot is a sensitivity influence factor on the oscillation of grasped explosive. 展开更多
关键词 explosIVE DISPOSAL ROBOT explosIVE ROUGH ROAD dynamic RESPONSE
下载PDF
Dynamic Fault Tree Analysis for Explosive Logic Network with Two-Input-One-Output
18
作者 黄承赓 李彦锋 +1 位作者 李姝颖 李海庆 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期140-143,共4页
The explosive logic network( ELN) with two-input-oneoutput was designed with three explosive logic gap null gates. The time window of the output of the ELN was given,after which the dynamic fault tree analysis was imp... The explosive logic network( ELN) with two-input-oneoutput was designed with three explosive logic gap null gates. The time window of the output of the ELN was given,after which the dynamic fault tree analysis was implemented. Two dynamic failure modes of the ELN were obtained,and then their own Markov transition processes were established. After that,the probability of failure was calculated from the corresponding state transition diagram. The reliability of the ELN which was in different length of time under the ambient incentive was then analyzed. Based on the above processing,the reliability of the ELN can be improved. 展开更多
关键词 explosIVE dynamic fault tree FUSE RELIABILITY
下载PDF
Experimental investigation on dynamic response of chamber to simulate deepwater explosive
19
作者 Zhong Dongwang Tu Shengwu Li Linna 《Engineering Sciences》 EI 2014年第6期85-89,共5页
Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic ... Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic strength of the chamber were analyzed by measuring the strain profiles of six characteristic points on the chamber.The research results revealed the rule of the dynamic response of the chamber on different explosive loads and static pressures.It provides references for the design and development of the chamber to simulate deepwater explosion. 展开更多
关键词 动态响应 深水 实验 爆炸 模拟 TNT当量 上腔室 应变分布
下载PDF
Experimental research on influence of emulsifier on crystallization quantity of emulsion explosives under dynamic pressure
20
作者 HUANG Wen-yao YAN Shi-long WU Hong-bo YUAN Sheng-fang 《Journal of Coal Science & Engineering(China)》 2011年第1期100-103,共4页
关键词 乳化炸药 动态压力 结晶量 乳化剂 试验 计量器具 水下爆炸 SPAN
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部