期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
An In-Depth Study of Complex Power System Dynamic Behavior Characteristics for Chinese UHV Power Grid Security
1
作者 Ding Daoqi State Grid Information & Telecommunication Co.,Ltd.Zhao Fang 《Electricity》 2009年第2期45-51,共7页
In this paper,a series of major policy decisions used to improve the power grid reliability,reduce the risk and losses of major power outages,and realize the modernization of 21st century power grid are discussed. The... In this paper,a series of major policy decisions used to improve the power grid reliability,reduce the risk and losses of major power outages,and realize the modernization of 21st century power grid are discussed. These decisions were adopted by American government and would also be helpful for the strategic development of Chinese power grid. It is proposed that China should take precaution,carry out security research on the overall dynamic behaviour characteristics of the UHV grid using the complexity theory,and finally provide safeguard for the Chinese UHV grid. It is also pointed out that,due to the lack of matured approaches to controll a cascading failure,the primary duty of a system operator is to work as a "watchdog" for the grid operation security,eliminate the cumulative effect and reduce the risk and losses of major cascading outages with the help of EMS and WAMS. 展开更多
关键词 EMS 2003 WAMS An In-Depth Study of Complex Power system dynamic Behavior Characteristics for Chinese UHV Power grid Security
下载PDF
Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body
2
作者 Zijie Li Hao Wang +1 位作者 Changshun Chen Kun Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期317-326,共10页
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th... The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads. 展开更多
关键词 Shock wave/vortex interference Muzzle jet Constrained boundary dynamic grid
下载PDF
A fast and reliable overset unstructured grids approach 被引量:2
3
作者 Zhong-Liang Kang Chao Yan +1 位作者 Jian Yu Yuan-Yuan Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第2期149-157,共9页
A cell-centred overset unstructured grids approach is developed.In this approach,the intergrid boundary is initially established based on the wall distance from the cell centre,and is then optimized.To accelerate the ... A cell-centred overset unstructured grids approach is developed.In this approach,the intergrid boundary is initially established based on the wall distance from the cell centre,and is then optimized.To accelerate the intergrid-boundary definition much more,a neighbor-toneighbor donor search algorithm based on advancing-front method is modified with the help of minimum cuboid boxes.To simplify the communications between different grid cell types and to obtain second-order spatial accuracy,a new interpolation method is constructed based on linear reconstruction,which employs only one layer of fringe cells along the intergrid boundary.For unsteady flows with relative motion,the intergrid boundary can be redefined fast and automatically.Several numerical results show that the present dynamic overset unstructured grids approach is accurate and reliable. 展开更多
关键词 Overset unstructured griddynamic grids·Intergrid-boundary definition·Interpolation
下载PDF
Fault Ride-Through(FRT)Behavior in VSC-HVDC as Key Enabler of Transmission Systems Using SCADA Viewer Software
4
作者 Samuel Bimenyimana Chen Wang +9 位作者 Godwin Norense Osarumwense Asemota Aphrodis Nduwamungu Francis Mulolani Jean De Dieu Niyonteze Shilpi Bora Chun-Ling Ho Noel Hagumimana Theobald Habineza Waqar Bashir Yiyi Mo 《Energy Engineering》 EI 2022年第6期2369-2406,共38页
The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requir... The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current(HVDC)transmission systems.The main technical issues for HVDC transmission systems are loss of synchronism,variation of quadrature currents,amplitude,the inability of station 1(rectifier),and station 2(inverter)to either inject,or absorb active,or reactive power in the network in any circumstances(before a fault occurs,during having a fault in network and after a fault cleared),and the variations of power transfer capabilities.Additionally,faults impact power quality such as voltage dips and power line outage time.This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter(VSC)based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator.The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities.Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software.The results indicate that the station’s rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance.Also,the reverse power flow under different modes of operation can ride through faults.At a 100.0%power transfer rate,the rectifier injected 775.0 W into the network.At a 0.0%power transfer rate,the rectifier injected 164.0 W into the network.At a-100.0%rated power,the rectifier injected 1264.0 W into the network and direction was also changed. 展开更多
关键词 Fault ride through capability dynamic grid fault simulator asymmetric components negative sequence control
下载PDF
Concurrent multi-task pre-processing method for LEO mega-constellation based on dynamic spatio-temporal grids
5
作者 Xibin CAO Ning LI Shi QIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期233-248,共16页
The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.How... The Low Earth Orbit(LEO)remote sensing satellite mega-constellation has the characteristics of large quantity and various types which make it have unique superiority in the realization of concurrent multiple tasks.However,the complexity of resource allocation is increased because of the large number of tasks and satellites.Therefore,the primary problem of implementing concurrent multiple tasks via LEO mega-constellation is to pre-process tasks and observation re-sources.To address the challenge,we propose a pre-processing algorithm for the mega-constellation based on highly Dynamic Spatio-Temporal Grids(DSTG).In the first stage,this paper describes the management model of mega-constellation and the multiple tasks.Then,the coding method of DSTG is proposed,based on which the description of complex mega-constellation observation resources is realized.In the third part,the DSTG algorithm is used to realize the processing of concurrent multiple tasks at multiple levels,such as task space attribute,time attribute and grid task importance evaluation.Finally,the simulation result of the proposed method in the case of constellation has been given to verify the effectiveness of concurrent multi-task pre-processing based on DSTG.The autonomous processing process of task decomposition and task fusion and mapping to grids,and the convenient indexing process of time window are verified. 展开更多
关键词 LEO mega-constellation Concurrent multiple tasks Tasks pre-processing Highly dynamic spatiotemporal grids Multi-task fusion merging Importance evaluation
原文传递
Research on buffer structure and flow field simulation of swash plate plunger type hydraulic transformer
6
作者 王晓晶 HUO Shuhang LI Wenjie 《High Technology Letters》 EI CAS 2022年第4期425-433,共9页
In order to solve the problem of excessive noise and vibration during the operation of the hydraulic transformer,an optimization method of valve plate damping hole structure is proposed to alleviate the phenomenon of ... In order to solve the problem of excessive noise and vibration during the operation of the hydraulic transformer,an optimization method of valve plate damping hole structure is proposed to alleviate the phenomenon of pressure shock.Firstly,the mathematical model of oil pressure gradient in the plunger cavity is established,and the incremental equation of pressure change is derived.Secondly,a kind of buffering structure is proposed,the corresponding relationship between the pressure change and the envelopment angle of the buffering hole and the aperture size is determined by analyzing the oil pressure change curve in the plunger cavity.Finally,the flow field models with buffering holes are established,and the transient simulation of the pressure change process under the optimal solution is carried out with ANSYS software and the flow field pressure distribution contours are obtained.Through the analysis of simulation results,it is concluded that the optimal envelope angle of the three buffer holes ofA-T-B-Ais 5°,and the optimal aperture is 1.8 mm,1.6 mm,and 1.7 mm,respectively.The buffer hole can achieve a better-buffering effect in the range of variable pressure angle[0°,101°].The buffer hole structure can effectively alleviate the pressure shock and reduce the noise level,which lays a foundation for the design and theoretical research of hydraulic transformers. 展开更多
关键词 hydraulic transformer pressure shock buffer structure flow field simulation dynamic grid
下载PDF
Numerical simulation of transient characteristics in a bulb turbine during the load rejection process
7
作者 Yue Lu Yu-quan Zhang +1 位作者 Zhong-wei He Yuan Zheng 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第1期170-183,共14页
To evaluate the safety of the bulb tubular turbine,the dynamic hydraulic characteristics of a hydropower station system during the load rejection process are studied through numerical simulations and a prototype test.... To evaluate the safety of the bulb tubular turbine,the dynamic hydraulic characteristics of a hydropower station system during the load rejection process are studied through numerical simulations and a prototype test.In the developed model,a dynamic grid technology(DGT)controls the closure of the guide vane and the blade,whilst the moment balance equation and the user-defined function(UDF)provide the runner’s rotation speed.The 3-D transient simulation method can well predict the rotation speed and mass flow curves in the state of load rejection.The simulation outcomes of the system performance are basically consistent with the measurement data of the prototype.As observed,the runner is subjected to the reversely increased torque and axial force,the system is in a braking phase,and the maximum speed peaks at 144.6%of the rated speed.Moreover,the internal flow of the runner is greatly affected by the closure of the guide vane,and the draft tube forms an eccentric spiral vortex rope.It breaks downstream,aggravating the instability of the draft tube.Overall,the transient characteristics span for the first five seconds,demonstrating the importance of establishing an efficient governing controller.The obtained results are useful for designing the turbine’s flow channel with a double regulating function and comprehending the turbine’s transient characteristics. 展开更多
关键词 Bulb tubular turbine load rejection numerical simulation dynamic grid prototype test
原文传递
Development process of muzzle flows including a gun-launched missile 被引量:8
8
作者 Zhuo Changfei Feng Feng Wu Xiaosong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期385-386,共2页
Numerical investigations on the launch process of a gun-launched missile from the muz- zle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to d... Numerical investigations on the launch process of a gun-launched missile from the muz- zle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW +) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the free- flight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point. 展开更多
关键词 Blast flow field Chemical reaction Computational fluiddynamics dynamic overlapped grids Gun-launched missile Muzzle flows
原文传递
A CFD-based numerical virtual flight simulator and its application in control law design of a maneuverable missile model 被引量:6
9
作者 Laiping ZHANG Xinghua CHANG +2 位作者 Rong MA Zhong ZHAO Nianhua WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2577-2591,共15页
A CFD-based Numerical Virtual Flight(NVF)simulator is presented,which integrates an unsteady flow solver on moving hybrid grids,a Rigid-Body Dynamics(RBD)solver and a module of the Flight Control System(FCS).A techni... A CFD-based Numerical Virtual Flight(NVF)simulator is presented,which integrates an unsteady flow solver on moving hybrid grids,a Rigid-Body Dynamics(RBD)solver and a module of the Flight Control System(FCS).A technique of dynamic hybrid grids is developed to control the active control surfaces with body morphing,with a technique of parallel unstructured dynamic overlapping grids generating proper moving grids over the deflecting control surfaces(e.g.the afterbody rudders of a missile).For the flow/kinematic coupled problems,the 6 Degree-Of-Freedom(DOF)equations are solved by an explicit or implicit method coupled with the URANS CFD solver.The module of the control law is explicitly coupled into the NVF simulator and then improved by the simulation of the pitching maneuver process of a maneuverable missile model.A nonlinear dynamic inversion method is then implemented to design the control law for the pitching process of the maneuverable missile model.Simulations and analysis of the pitching maneuver process are carried out by the NVF simulator to improve the flight control law.Higher control response performance is obtained by adjusting the gain factors and adding an integrator into the control loop. 展开更多
关键词 dynamic hybrid grid generation Flight control law Flow/kinematic coupling method Maneuverable missile pitching Nonlinear dynamic inversion Numerical virtual?ight
原文传递
A novel high-order scheme for numerical simulation of wake flow over helicopter rotors in hover 被引量:2
10
作者 Shaoqiang HAN Wenping SONG Zhonghua HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期260-274,共15页
Accurate prediction of tip vortices is crucial for predicting the hovering performance of a helicopter rotor.A new high-order scheme(we call it WENO-K)proposed by our research group is employed to minimize numerical d... Accurate prediction of tip vortices is crucial for predicting the hovering performance of a helicopter rotor.A new high-order scheme(we call it WENO-K)proposed by our research group is employed to minimize numerical dissipation and extended to numerical simulation of unsteady compressible viscous flows dominated by tip vortices over hovering rotors.WENO-K is referred to as an adaptively optimized WENO scheme with Gauss-Kriging reconstruction,and its advantage is to reduce dissipation in smooth regions of flow while preserving high-resolution around discontinuities.Here WENO-K scheme is adopted to reconstruct left and right state values within the Roe Riemann solver updating the inviscid fluxes on a structured dynamic overset grid.To minimize the accuracy loss for high-order reconstruction on artificial boundaries of overset grid,a method of multilayer fringes is proposed to carry out interpolation between background grid and blade grid.Massively parallel computing considering automatic load balance on averagely partitioned overset grid is developed to reduce the wall-clock time of an unsteady simulation.Numerical results for Caradonna-Tung(C-T)rotor in hover at the conditions of subsonic and transonic tip Mach numbers show that the thrust coefficient error for the result of WENO-K scheme is no more than 3%.Compared with WENO-JS scheme,WENO-K scheme achieves about 40%improvement on accuracy of predicting rotor thrust with only 4.1%extra computational cost.More importantly,WENO-K scheme can capture more sophisticated unsteady flow structures and resolve tip vortices to a larger wake age with an increment of about 270°compared to WENO-JS scheme. 展开更多
关键词 dynamic overset grid Helicopter rotors High-order scheme Unsteady flow Vortex flow WENO scheme
原文传递
Self-ignition characteristics of the high-speed ramjet kinetic energy projectile in the launch process 被引量:1
11
作者 Changfei ZHUO Haotian CHEN +1 位作者 Wenjin YAO Xiaoming WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第4期851-860,共10页
To research the self-ignition characteristics of high-speed ramjet kinetic energy projectile in the launch process, the self-ignition process based on the solid fuel of polyethylene was numerically simulated by using ... To research the self-ignition characteristics of high-speed ramjet kinetic energy projectile in the launch process, the self-ignition process based on the solid fuel of polyethylene was numerically simulated by using the dynamic grid technology. The effect of different muzzle velocity on the self-ignition performance, and the effect of opening the blockage at different times on the flow field stability of the combustion chamber and the flow field characteristics after the solid fuel ramjet stabilized were analyzed. The results show that the occurrence of self-ignition is not only related to the pressure, temperature in the combustion chamber, and the muzzle velocity, but also to the content of C_2H_4 and its degree of mixing with air in the combustion chamber. After the kinetic energy projectile gets out of the muzzle and before the blockage opens, there is oscillation occurring in the combustion chamber. The higher the muzzle velocity of the kinetic energy projectile, the more prone to the occurrence of the self-ignition and the negative effects can be avoided due to the pressure oscillation in the combustion chamber. The effect of opening the blockage at different times on the flow field stability after the self-ignition occurs in a period of time is weak. After the blockage opens, the solid fuel ramjet can reach a stable working condition quickly. 展开更多
关键词 dynamic grid Kinetic energy projectile Muzzle velocity SELF-IGNITION Solid fuel ramjet
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部