期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于PCA-DNMFSC的卫星异常检测方法研究 被引量:2
1
作者 彭艺 冯小虎 +1 位作者 贾树泽 韩琦 《计算机仿真》 北大核心 2023年第1期48-52,142,共6页
为了实现卫星的智能化健康管理,提出基于主成分分析-动态稀疏化非负矩阵分解(PCA-DNMFSC)进行卫星遥测异常的自动检测。DNMFSC将卫星遥测数据分解成基向量,并使基矩阵稀疏化,致使产生异常的特征凸显,从而实现异常的检测。考虑到卫星遥... 为了实现卫星的智能化健康管理,提出基于主成分分析-动态稀疏化非负矩阵分解(PCA-DNMFSC)进行卫星遥测异常的自动检测。DNMFSC将卫星遥测数据分解成基向量,并使基矩阵稀疏化,致使产生异常的特征凸显,从而实现异常的检测。考虑到卫星遥测数据时序相关性,提出样本数据基于前l时刻的观测数据进行动态化表示;考虑到DNMFSC对基矩阵和系数矩阵的初始化是随机的,影响算法稳定性,采用主成分分析法(PCA)对DNMFSC进行初始化处理;通过构建的统计量的累计贡献率确定异常由哪些变量产生,从而识别异常。通过不同卫星的实际数据进行实验验证,结果表明利用正常的观测数据,可以实时检测卫星遥测数据出现的异常,有效避免故障漏报。 展开更多
关键词 卫星 异常检测 累计贡献率 动态稀疏化非负矩阵分解
下载PDF
Improved Non-negative Matrix Factorization Algorithm for Sparse Graph Regularization
2
作者 Caifeng Yang Tao Liu +2 位作者 Guifu Lu Zhenxin Wang Zhi Deng 《国际计算机前沿大会会议论文集》 2021年第1期221-232,共12页
Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometr... Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometric structure of image data to optimize the basis matrix in two steps.A threshold value s was first set to judge the threshold value of the decomposed base matrix to filter the redundant information in the data.Using L2 norm,sparse constraints were then implemented on the basis matrix,and integrated into the objective function to obtain the objective function of New-SGNMF.In addition,the derivation process of the algorithm and the convergence analysis of the algorithm were given.The experimental results on COIL20,PIE-pose09 and YaleB database show that compared with K-means,PCA,NMF and other algorithms,the proposed algorithm has higher accuracy and normalized mutual information. 展开更多
关键词 Image recognition non-negative matrix factorization Graph regularization Basis matrix sparseness constraints
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部