To maximize the power density of the electric propulsion motor in aerospace application,this paper proposes a novel Dynamic Neighborhood Genetic Learning Particle Swarm Optimization(DNGL-PSO)for the motor design,which...To maximize the power density of the electric propulsion motor in aerospace application,this paper proposes a novel Dynamic Neighborhood Genetic Learning Particle Swarm Optimization(DNGL-PSO)for the motor design,which can deal with the insufficient population diversity and non-global optimal solution issues.The DNGL-PSO framework is composed of the dynamic neighborhood module and the particle update module.To improve the population diversity,the dynamic neighborhood strategy is first proposed,which combines the local neighborhood exemplar generation mechanism and the shuffling mechanism.The local neighborhood exemplar generation mechanism enlarges the search range of the algorithm in the solution space,thus obtaining highquality exemplars.Meanwhile,when the global optimal solution cannot update its fitness value,the shuffling mechanism module is triggered to dynamically change the local neighborhood members.The roulette wheel selection operator is introduced into the shuffling mechanism to ensure that particles with larger fitness value are selected with a higher probability and remain in the local neighborhood.Then,the global learning based particle update approach is proposed,which can achieve a good balance between the expansion of the search range in the early stage and the acceleration of local convergence in the later stage.Finally,the optimization design of the electric propulsion motor is conducted to verify the effectiveness of the proposed DNGL-PSO.The simulation results show that the proposed DNGL-PSO has excellent adaptability,optimization efficiency and global optimization capability,while the optimized electric propulsion motor has a high power density of 5.207 kW/kg with the efficiency of 96.12%.展开更多
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant...The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.展开更多
基金supported by the National Natural Science Foundation of China(No.:52177028)Aeronautical Science Foundation of China(No.201907051002)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.YWF21BJJ522)the Major Program of the National Natural Science Foundation of China(No.51890882).
文摘To maximize the power density of the electric propulsion motor in aerospace application,this paper proposes a novel Dynamic Neighborhood Genetic Learning Particle Swarm Optimization(DNGL-PSO)for the motor design,which can deal with the insufficient population diversity and non-global optimal solution issues.The DNGL-PSO framework is composed of the dynamic neighborhood module and the particle update module.To improve the population diversity,the dynamic neighborhood strategy is first proposed,which combines the local neighborhood exemplar generation mechanism and the shuffling mechanism.The local neighborhood exemplar generation mechanism enlarges the search range of the algorithm in the solution space,thus obtaining highquality exemplars.Meanwhile,when the global optimal solution cannot update its fitness value,the shuffling mechanism module is triggered to dynamically change the local neighborhood members.The roulette wheel selection operator is introduced into the shuffling mechanism to ensure that particles with larger fitness value are selected with a higher probability and remain in the local neighborhood.Then,the global learning based particle update approach is proposed,which can achieve a good balance between the expansion of the search range in the early stage and the acceleration of local convergence in the later stage.Finally,the optimization design of the electric propulsion motor is conducted to verify the effectiveness of the proposed DNGL-PSO.The simulation results show that the proposed DNGL-PSO has excellent adaptability,optimization efficiency and global optimization capability,while the optimized electric propulsion motor has a high power density of 5.207 kW/kg with the efficiency of 96.12%.
文摘The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.