In-house part supply affects the efficiency of mixed-model assembly lines considerably. Hence, we propose a reliable Just-In-Time part supply strategy with the use of decentralized supermarkets. For a given production...In-house part supply affects the efficiency of mixed-model assembly lines considerably. Hence, we propose a reliable Just-In-Time part supply strategy with the use of decentralized supermarkets. For a given production sequence and line layout, the proposed strategy schedules tow train routing and delivery problems jointly to minimize the number of employed town trains and the traveling time, while ensuring that stations never run out of parts. To solve this problem, a mathematical formulation is proposed for each sub-problem aiming at minimizing supply cost. Then, a dynamic programming algorithm for routing and a greedy algorithm for delivery are developed, both of which are of polynomial runtime. Finally, a computational study is implemented to validate the effectiveness of the strategy, and to investigate the effects of the delivery capacity of tow trains and storage capacity of stations on supply cost.展开更多
基金supported in part by the National Key Technology Research and Development Program(No.2012BAF15G01)
文摘In-house part supply affects the efficiency of mixed-model assembly lines considerably. Hence, we propose a reliable Just-In-Time part supply strategy with the use of decentralized supermarkets. For a given production sequence and line layout, the proposed strategy schedules tow train routing and delivery problems jointly to minimize the number of employed town trains and the traveling time, while ensuring that stations never run out of parts. To solve this problem, a mathematical formulation is proposed for each sub-problem aiming at minimizing supply cost. Then, a dynamic programming algorithm for routing and a greedy algorithm for delivery are developed, both of which are of polynomial runtime. Finally, a computational study is implemented to validate the effectiveness of the strategy, and to investigate the effects of the delivery capacity of tow trains and storage capacity of stations on supply cost.