期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Dynamic response characteristics of a circular lined tunnel under anisotropy frost heave of overlying soil at the tunnel portal section in cold regions
1
作者 ZHANG Shuo-cheng CHEN Wen-hua 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1424-1440,共17页
The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmo... The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5. 展开更多
关键词 Frost heave Tunnel portal section Relative movement dynamic response characteristics Cold region
下载PDF
Research on coupled thermo-hydro-mechanical dynamic response characteristics of saturated porous deep-sea sediments under vibration of mining vehicle 被引量:1
2
作者 Wei ZHU Xinyu SHI +2 位作者 Rong HUANG Liyue HUANG Wenbo MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1349-1362,共14页
The excessive deformation of deep-sea sediments caused by the vibration of the mining machine will adversely affect the efficiency and safety of mining.Combined with the deep-sea environment,the coupled thermo-hydro-m... The excessive deformation of deep-sea sediments caused by the vibration of the mining machine will adversely affect the efficiency and safety of mining.Combined with the deep-sea environment,the coupled thermo-hydro-mechanical problem for saturated porous deep-sea sediments subject to the vibration of the mining vehicle is investigated.Based on the Green-Lindsay(G-L)generalized thermoelastic theory and Darcy’s law,the model of thermo-hydro-mechanical dynamic responses for saturated porous deep-sea sediments under the vibration of the mining vehicle is established.We obtain the analytical solutions of non-dimensional vertical displacement,excess pore water pressure,vertical stress,temperature,and change in the volume fraction field with the normal mode analysis method,and depict them graphically.The normal mode analysis method uses the canonical coordinate transformation to solve the equation,which can quickly decouple the equation by ignoring the modal coupling effect on the basis of the canonical mode.The results indicate that the vibration frequency has obvious influence on the vertical displacement,excess pore water pressure,vertical stress,and change in volume fraction field.The loading amplitude has a great effect on the physical quantities in the foundation,and the changes of the physical quantities increase with the increase in loading amplitude. 展开更多
关键词 deep-sea sediment thermo-hydro-mechanical dynamic generalized thermoelastic theory normal mode analysis dynamic response characteristic
下载PDF
Numerical Investigation on Dynamic Response Characteristics of Fluid-Structure Interaction of Gas-Liquid Two-Phase Flow in Horizontal Pipe
3
作者 王志伟 何炎平 +4 位作者 李铭志 仇明 黄超 刘亚东 王梓 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期237-244,共8页
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat... Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions. 展开更多
关键词 gas-liquid two-phase flow volume of fluid model fluid-structure interaction(FSI) dynamic response characteristics
原文传递
Research on Dynamic Response Characteristics of 6 MW Spar-Type Floating Offshore Wind Turbine 被引量:4
4
作者 孟龙 何炎平 +2 位作者 周涛 赵永生 刘亚东 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期505-514,共10页
A 6 MW spar-type floating offshore wind turbine(FOWT) model is put forward and a fully coupled aero-hydro-servo-elastic time domain model is established in the fatigue,aerodynamics,structures and turbulence(FAST) code... A 6 MW spar-type floating offshore wind turbine(FOWT) model is put forward and a fully coupled aero-hydro-servo-elastic time domain model is established in the fatigue,aerodynamics,structures and turbulence(FAST) code.Influence rules of wind load and wave load on the characteristics of 6 MW spar-type FOWT are investigated.Firstly,validation of the model is carried out and a satisfactory result is obtained.The maximal deviations of rotor thrust and power between simulation results and reference values are 4.54% and-2.74%,respectively.Then the characteristics,including rotor thrust,rotor power,out-of-plane blade deflection,tower base fore-aft bending moment,and mooring line tension,are researched.The results illustrate that the mean value of dynamic response characteristics is mainly controlled by the wind-induced action.For characteristics of tower base fore-aft bending moment and platform pitch motion,the oscillation is dominated by the wave-induced action during all conditions considered.For characteristics of out-of-plane blade tip deflection and mooring line tension,the oscillation is commanded by combination effect of wave and wind loads when the wind speed is lower than the rated wind speed(hereinafter referred to as below rated wind speed) and is controlled by the wave-induced action when the wind speed is higher than the rated wind speed(hereinafter referred to as above rated wind speed).As to the rotor thrust and power,the oscillation is dominated by the wind induced action at below rated wind speed and by the combination action of wind and wave loads at above rated wind speed.The results should be useful to the detailed design and model basin test of the 6 MW spar-type FOWT. 展开更多
关键词 floating offshore wind turbine(FOWT) time domain response wind and wave loads dynamic response characteristics
原文传递
THE DYNAMIC PLASTIC RESPONSE CHARACTERISTICS OF CIRCULAR BEAM
5
作者 王建军 刘晓坤 陈百屏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第7期599-609,共11页
In this paper the problem of a circular beam subjected to radial impact by a rigid mass at its lip in its own plane is investigaleil on the basis of rigid-perfectly plastic assumption. The analytical solution of the p... In this paper the problem of a circular beam subjected to radial impact by a rigid mass at its lip in its own plane is investigaleil on the basis of rigid-perfectly plastic assumption. The analytical solution of the particle velocities is obtained as the junction of travelling plastic hinge location. Ky analysing the solution, some special properties oj circular beam problem are found. 展开更多
关键词 THE dynamic PLASTIC response characteristicS OF CIRCULAR BEAM
下载PDF
Dynamic Characteristics and Simplified Numerical Methods of An All-Vertical-Piled Wharf in Offshore Deep Water 被引量:5
6
作者 张华庆 孙熙平 +2 位作者 王元战 尹纪龙 王朝阳 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期705-718,共14页
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff... There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications. 展开更多
关键词 offshore deep water port all-vertical-piled wharf dynamic characteristics wave cyclic loads dynamic response simplified calculating methods
下载PDF
Shaking table test for reinforcement of soil slope with multiple sliding surfaces by reinforced double-row anti-slide piles 被引量:5
7
作者 WU Hong-gang PAI Li-fang 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1419-1436,共18页
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg... Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles. 展开更多
关键词 Double row anti-slide piles multislide surface landslide Shaking table test ACCELERATION dynamic soil pressure dynamic response characteristic
下载PDF
Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions 被引量:2
8
作者 WANG Zhi-wei HE Yan-ping +4 位作者 LI Ming-zhi QIU Ming HUANG Chao LIU Ya-dong WANG Zi 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期914-923,共10页
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte... Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend. 展开更多
关键词 two-phase flow 90°pipe bend slug flow fluid−structure interaction dynamic response characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部