期刊文献+
共找到296,902篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical properties and fracture surface roughness of thermally damaged granite under dynamic splitting
1
作者 Yijin Qian Peng Jia +1 位作者 Songze Mao Jialiang Lu 《Deep Underground Science and Engineering》 2024年第1期103-116,共14页
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp... In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed. 展开更多
关键词 dynamic splitting fracture surface roughness GRANITE strain rate thermal treatment
下载PDF
Model of Universe as Described by Dynamic Universe Model
2
作者 Satyavarapu Naga Parameswara Gupta 《Open Journal of Modelling and Simulation》 2019年第1期41-78,共38页
In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the m... In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis. 展开更多
关键词 dynamic UNIVERSE MODEL Hubble Space Telescope (HST) SITA Simulations (SITA-Simulation of Inter Intra Tautness Attraction Forces Used by dynamic UNIVERSE Model) Singularity-Free COSMOLOGY Blue Shifted GALAXIES Red Shifted GALAXIES Grazing Radiation Frequency Changes Formation of Elements Nucleosynthesis dynamic UNIVERSE MODEL Energy to Mass Conversion Methods: N-Body Simulations-Gravitation-Cosmology
下载PDF
Lagrangian theoretical framework of dynamics of nonholonomic systems 被引量:2
3
作者 LIANG LiFu1,HU HaiChang2 & CHEN DeMin3 1 College of Civil Engineering,Harbin Engineering University,Harbin 150001,China 2 Institute of Spacecraft System Engineering,Chinese Academy of Space Technology,Beijing 100086,China 3 College of Vehicle Engineering,Beijing Institute of Technology,Beijing 100081,China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2007年第6期766-778,共13页
By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic system... By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic systems. And the restriction that two Lagrangian classical relationships cannot be applied to nonholonomic systems for a long time was overcome. Then,one important formula of similar La-grangian classical relationship called the popularized Lagrangian classical rela-tionship was derived. From Vakonomic model,by two Lagrangian classical rela-tionships and the popularized Lagrangian classical relationship,the result is the same with Chetaev's model,and thus Chetaev's model and Vakonomic model were unified. Simultaneously,the Lagrangian theoretical framework of dynamics of nonholonomic system was established. By some representative examples,it was validated that the Lagrangian theoretical framework of dynamics of nonholonomic systems is right. 展开更多
关键词 generalized variational principle NONHOLONOMIC systems Chetaev's model Vakonomic model the LAGRANGIAN CLASSICAL relationship the LAGRANGIAN theoretical framework By the generalized variational principle of two kinds of variables in general mechanics it was demonstrated that two LAGRANGIAN CLASSICAL relationships can be applied to both holonomic SYSTEMS and NONHOLONOMIC systems. And the restriction that two LAGRANGIAN CLASSICAL relationships cannot be applied to NONHOLONOMIC SYSTEMS for a long time was overcome. Then one important formula of similar LAGRANGIAN CLASSICAL RELATIONSHIP called the popularized LAGRANGIAN CLASSICAL RELATIONSHIP was derived. From Vakonomic model by two LAGRANGIAN CLASSICAL relationships and the popularized LAGRANGIAN CLASSICAL relationship the result is the same with Chetaev's model and thus Chetaev's MODEL and Vakonomic MODEL were unified. Simultaneously the LAGRANGIAN theoretical framework of dynamics of NONHOLONOMIC system was established. By some representative examples it was validated that the LAGRANGIAN theoretical framework of dynamics of NONHOLONOMIC SYSTEMS is right.
原文传递
Nonlinear Differential Equation of Macroeconomic Dynamics for Long-Term Forecasting of Economic Development
4
作者 Askar Akaev 《Applied Mathematics》 2018年第5期512-535,共24页
In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investm... In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investment. A scheme is proposed for obtaining approximate solutions of nonlinear differential equation by splitting solution into the rapidly oscillating business cycles and slowly varying trend using Krylov-Bogoliubov-Mitropolsky averaging. Simplest modes of the economic system are described. Characteristics of the bifurcation point are found and bifurcation phenomenon is interpreted as loss of stability making the economic system available to structural change and accepting innovations. System being in a nonequilibrium state has a dynamics with self-sustained undamped oscillations. The model is verified with economic development of the US during the fifth Kondratieff cycle (1982-2010). Model adequately describes real process of economic growth in both quantitative and qualitative aspects. It is one of major results that the model gives a rough estimation of critical points of system stability loss and falling into a crisis recession. The model is used to forecast the macroeconomic dynamics of the US during the sixth Kondratieff cycle (2018-2050). For this forecast we use fixed production capital functional dependence on a long-term Kondratieff cycle and medium-term Juglar and Kuznets cycles. More accurate estimations of the time of crisis and recession are based on the model of accelerating log-periodic oscillations. The explosive growth of the prices of highly liquid commodities such as gold and oil is taken as real predictors of the global financial crisis. The second wave of crisis is expected to come in June 2011. 展开更多
关键词 Long-Term Economic Trend Cycles Nonlinear Accelerator Induced and Autonomous Investment Differential Equations of MACROECONOMIC dynamics Bifurcation Stability CRISIS RECESSION Forecasting Explosive Growth in the PRICES of Highly Liquid Commodities as a PREDICTOR of CRISIS
下载PDF
In situ atomic-scale observation of size-dependent (de) potassiation and reversible phase transformation in tetragonal FeSe anodes
5
作者 Ran Cai Lixia Bao +12 位作者 Wenqi Zhang Weiwei Xia Chunhao Sun Weikang Dong Xiaoxue Chang Ze Hua Ruiwen Shao Toshio Fukuda Zhefei Sun Haodong Liu Qiaobao Zhang Feng Xu Lixin Dong 《InfoMat》 SCIE CAS CSCD 2023年第1期161-171,共11页
Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the explo... Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs. 展开更多
关键词 elucidated by geometric phase analysis and finite-element analysis. Despite the different intercalation behaviors the formed products of Fe and K 2 Se after full potassiation can be converted back into the original FESE phase upon depotassiation. In particular small-sized nanoflakes exhibit better cycling perfor- mance with well-maintained structural integrity. This article presents the first successful demonstration of ATOMIC-SCALE visualization that can reveal size- dependent potassiation dynamics. Moreover it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs. KEYWOR DS in situ transmission electron microscopy potassium-ion batteries potassium-ion storage mechanism SIZE-DEPENDENT effects TETRAGONAL FESE
原文传递
Simplified Coarse-Grained Dynamic Model for Real Gases
6
作者 Panagis G. Papadopoulos Christopher G. Koutitas +1 位作者 Yannis N. Dimitropoulos Elias C. Aifantis 《Open Journal of Physical Chemistry》 2017年第2期50-71,共22页
A simplified model is proposed for an easy understanding of the coarse-grained technique and for achieving a first approximation to the behavior of gases. A mole of a gas substance, within a cubic container, is repres... A simplified model is proposed for an easy understanding of the coarse-grained technique and for achieving a first approximation to the behavior of gases. A mole of a gas substance, within a cubic container, is represented by six particles symmetrically moving. The impacts of particles on container walls, the inter-particle collisions, as well as the volume of particles and the inter-particle attractive forces, obeying a Lennard-Jones curve, are taken into account. Thanks to the symmetry, the problem is reduced to the nonlinear dynamic analysis of a SDOF oscillator, which is numerically solved by a step-by-step time integration algorithm. Five applications of proposed model, on Carbon Dioxide, are presented: 1) Ideal gas in STP conditions. 2) Real gas in STP conditions. 3) Condensation for small molar volume. 4) Critical point. 5) Iso-kinetic energy curves and iso-therms in the critical point region. Results of the proposed model are compared with test data and results of the Van der Waals model for real gases. 展开更多
关键词 Real Gases COARSE-GRAINED Molecular dynamics Particles Volume Inter-Particle ATTRACTIVE Forces LENNARD-JONES Curve STEP-BY-STEP Time Integration Algorithm Condensation Critical Point Iso-Kinetic Energy Curves Iso-Therms Van der WAALS Model
下载PDF
Oxidation Kinetics of Aluminum Powders in a Gas Fluidized Bed Reactor in the Potential Application of Surge Arresting Materials
7
作者 Hong Shih 《Materials Sciences and Applications》 2019年第3期253-292,共40页
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre... In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general. 展开更多
关键词 Aluminum Spherical Power GAS FLUIDIZATION Bed Oxidation Mechanism Oxide Growth Rate Gibbs Free Energy Ellingham Diagram Mathematical Modeling dynamic System Plasma DIFFUSION DIFFUSION Coefficient Crystallographic Defect Vacancy Pressure Temperature Flow Laplace Transform Equation Boundary Condition Ficks Second Law Software Experimental Theoretical SURGE ARRESTING MATERIALS Analytical Solution
下载PDF
Dynamic NMR and Twisted Intramolecular Charge Transfer Excited States
8
作者 Iraj Parchamazad Debra Hornyak Melvin Miles 《American Journal of Analytical Chemistry》 2015年第5期402-410,共9页
In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom... In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60&deg;C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes. 展开更多
关键词 TWISTED Intramolecular Charge TRANSFER STATE Back Electron TRANSFER TWISTED Excited STATE dynamic NMR Rotation around B-N Bond Molecular PHOTOCHEMISTRY inside NMR PROBE Customized Optical PROBE Solvent Effect Low Temperature Spectra
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:2
9
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Seismic anisotropy and upper mantle dynamics in Alaska:A review of shear wave splitting analyses
10
作者 Zhaofeng Jin Yuchen Yang +7 位作者 Muhammad Ishaidir Siregar Zihao Mu S.M.Ariful Islam Qichao Zhao Dan Wang Fan Zhang Xugang Yang Liwei Song 《Earthquake Research Advances》 CSCD 2024年第2期72-81,共10页
Shear wave splitting(SWS)is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle,especially in tectonically active... Shear wave splitting(SWS)is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle,especially in tectonically active regions such as subduction zones.The Aleutian-Alaska subduction zone has a convergence rate of approximately 50 mm/yr,with a trench length reaching nearly 2800 km.Such a long subduction zone has led to intensive continental deformation and numerous strong earthquakes in southern and central Alaska,while northern Alaska is relatively inactive.The sharp contrast makes Alaska a favorable locale to investigate the impact of subduction on mantle dynamics.Moreover,the uniqueness of this subduction zone,including the unusual subducting type,varying slab geometry,and atypical magmatic activity and composition,has intrigued the curiosity of many geoscientists.To identify different sources of seismic anisotropy beneath the Alaska region and probe the influence of a geometrically varying subducting slab on mantle dynamics,extensive SWS analyses have been conducted in the past decades.However,the insufficient station and azimuthal coverage,especially in early studies,not only led to some conflicting results but also strongly limited the in-depth investigation of layered anisotropy and the estimation of anisotropy depth.With the completion of the Transportable Array project in Alaska,recent studies have revealed more detailed mantle structures and characteristics based on the dense station coverage and newly collected massive seismic data.In this study,we review significant regional-and continental-scale SWS studies in the Alaska region and conclude the mantle flow fields therein,to understand how a geometrically varying subducting slab alters the regional mantle dynamics.The summarized mantle flow mechanisms are believed to be conducive to the understanding of seismic anisotropy patterns in other subduction zones with a complicated tectonic setting. 展开更多
关键词 Seismic anisotropy Shear wave splitting Mantle flow Alaska subduction zone SLAB
下载PDF
Means of Choice for Interactive Management of Dynamic Geometry Problems Based on Instrumented Behaviour
11
作者 Philippe R. Richard Michel Gagnon +2 位作者 Josep Maria Fortuny Nicolas Leduc Michèle Tessier-Baillargeon 《American Journal of Computational Mathematics》 2013年第3期41-51,共11页
Our paper presents a project that involves two research questions: does the choice of a related problem by the tutorial system allow the problem solving process which is blocked for the student to be restarted? What i... Our paper presents a project that involves two research questions: does the choice of a related problem by the tutorial system allow the problem solving process which is blocked for the student to be restarted? What information about learning do related problems returned by the system provide us? We answer the first question according to the didactic engineering, whose mode of validation is internal and based on the confrontation between an a priori analysis and an a posteriori analysis that relies on data from experiments in schools. We consider the student as a subject whose adaptation processes are conditioned by the problem and the possible interactions with the computer environment, and also by his knowledge, usually implicit, of the institutional norms that condition his relationship with geometry. Choosing a set of good problems within the system is therefore an essential element of the learning model. Since the source of a problem depends on the student’s actions with the computer tool, it is necessary to wait and see what are the related to problems that are returned to him before being able to identify patterns and assess the learning. With the simultaneity of collecting and analysing interactions in each class, we answer the second question according to a grounded theory analysis. By approaching the problems posed by the system and the designs in play at learning blockages, our analysis links the characteristics of problems to the design components in order to theorize on the decisional, epistemological, representational, didactic and instrumental aspects of the subject-milieu system in interaction. 展开更多
关键词 DIDACTICS of Mathematics Competencies Geometric Thinking TUTORIAL System Related PROBLEMS dynamic Geometry Instrumented Behavior Cognitive Interactions CONCEPTIONS Mathematical Work Space MEANS of CHOICE Didactic Contract
下载PDF
Dispersion Dynamical Magnetic Radius in Intrinsic Spin Equals the Compton Wavelength
12
作者 Antony J. Bourdillon 《Journal of Modern Physics》 2018年第13期2295-2307,共13页
Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a ... Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a central field. There, quantum numbers are integral. The half-integral spinor moment appears to be due to cylindrical motion in an external applied magnetic field;when this is zero , the spin states are degenerate. Consider lifting the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely derived electronic magnetic radius shares the identical value to the Compton wavelength. 展开更多
关键词 Magnetic RADIUS INTRINSIC SPIN COMPTON WAVELENGTH DISPERSION dynamics Stable Wave Packet Special Relativity Propagation Transverse Plane Functions of Relativistic Free Particles Quantum Physics Quantum Mechanics
下载PDF
THE DYNAMICAL BEHAVIOR OF FULLY DISCRETE SPECTRAL METHOD FOR NONLINEAR SCHRODINGER EQUATION WITH WEAKLY DAMPED 被引量:3
13
作者 向新民 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期165-176,共12页
Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the ... Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to 展开更多
关键词 nonlinear SCHRODINGER equation INFINITE dimensional dynamic system dynamical behavior fully discrete spectral method large TIME convergence difference scheme vrich TIME differ-
下载PDF
Temporal and spatial evolution of surface sediments characteristics in the Dagu River estuary and their dynamic response mechanism 被引量:5
14
作者 Xiao-ying Chen Da-hai Liu +3 位作者 Ping Yin Jin-qing Liu Ke Cao Fei Gao 《China Geology》 2019年第3期325-332,共8页
Based on the 39 surface sediment samples collected in the flood season and the dry season in 2012 respectively and the measured hydrological data in October 2012, the sediment grain size characteristics has been analy... Based on the 39 surface sediment samples collected in the flood season and the dry season in 2012 respectively and the measured hydrological data in October 2012, the sediment grain size characteristics has been analyzed and the response mechanism of surface sediments to estuarine hydrodynamics was revealed by calculating the range of waves and tidal currents. The results show that:(1) The grain size of the surface sediment samples decreased gradually from land to sea in the flood season. The fine sediment was redistributed under marine hydrodynamics in the dry season and the sediments showed coarser tendency ingeneral;(2) tidal current stirring sediment was very obvious in Dagu River estuary area, and wave stirring sediments mainly occurred in the tidal flat area and estuary sand bar area;(3) in the flood season, surface sediment sat the estuary were transported towards south and southeast. In the dry season, surface sediments were transported towards southwest at the north area of Jiaozhou Bay Bridge, and sediments were transported towards northeast area at the south of Jiaozhou Bay Bridge. 展开更多
关键词 Dagu River ESTUARY Surface SEDIMENTS Global climate and environmental change Water dynamics COASTAL zone GEOLOGICAL survey engineering Qingdao SHANDONG Province China
下载PDF
Dynamically enhanced Autler–Townes splitting by orthogonal XUV fields
15
作者 吴立龙 姜维超 彭良友 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期344-350,共7页
Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally pola... Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies. 展开更多
关键词 AutlerTownes splitting orthogonal XUV fields photoelectron spectra Rabi frequency
下载PDF
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids with Rheology
16
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2024年第1期108-168,共61页
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ... This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon. 展开更多
关键词 THERMOVISCOELASTICITY RHEOLOGY Memory Finite Strain Finite Deformation Nonlinear dynamics dynamic Bifurcation Ordered Rate Theories
下载PDF
Dynamic Analysis of Soil Structure Interaction Effect on Multi Story RC Frame
17
作者 Hailu Getachew Kabtamu Gang Peng Denghong Chen 《Open Journal of Civil Engineering》 2018年第4期426-446,共21页
In this study dynamic analysis of Soil Structure Interaction (SSI) effect on multi story reinforced concrete (RC) frame founded on soft soil (flexible base) is made and compared with fixed base. Two model 2D RC frames... In this study dynamic analysis of Soil Structure Interaction (SSI) effect on multi story reinforced concrete (RC) frame founded on soft soil (flexible base) is made and compared with fixed base. Two model 2D RC frames with 7 and 12 story are selected for analysis. Winkler Spring and half space direct method models are used for flexible base for the frames founded on two types of soft soils with shear velocity Vs < 150 m/s Asper Seismic Codes of Chinese GB50011-2010 Soil IV and Ethiopian ES8-2015 soil D. The frames are subjected to strong ground motion matched to response spectrums of soft soil of Chinese GB50011-2010 and Ethiopian ES8-2015 for linear time history analysis. The dynamic analysis result shows Spring and Fixed base mass participation 90% reaches in 2 or 3 modes but in direct method 11 to 30 modes for story 12 and 7 respectively. However, both flexible base models have bigger fundamental period of vibration and inter story drift but smaller base shear than fixed base. In addition, within the flexible base models the inter-story drift, second order effect (P-Δ) and Story shear distribution are different along the height of frames. The spring model shows larger Story drift and second order effect (P-Δ) at the bottom of Story for both soft soils types. On the other hand, half space direct method model indicates value reverse to spring model;it gives bigger Story drift and P-Δ effect in the top stories than fixed base. Finally, this study concludes that base shear reduction due to SSI may not be always beneficial. Because the gravity load is constant in both fixed and flexible bases that cause bigger P-Δ effect at the bottom stories due to increase, inter story drift and decrease story shear in flexible base. 展开更多
关键词 Soil Structure Interaction dynamic Analysis Fixed BASE Flexible BASE Direct Method WINKLER Spring PERIOD of Vibration STORY SHEAR STORY DRIFT and P-Δ Effect
下载PDF
Dynamic Signature Verification Using Pattern Recognition
18
作者 Emmanuel Nwabueze Ekwonwune Duroha Austin Ekekwe +1 位作者 Chinyere Iheakachi Ubochi Henry Chinedu Oleribe 《Journal of Software Engineering and Applications》 2024年第5期214-227,共14页
Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key mot... Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used. 展开更多
关键词 VERIFICATION SECURITY BIOMETRICS SIGNATURE AUTHENTICATION Model Pattern Recognition dynamic
下载PDF
Fracturing damage process in dynamic split experiments of a brittle glass
19
作者 Ning Cui Linmao Ye Kaixin Liu 《Theoretical & Applied Mechanics Letters》 2012年第6期9-14,共6页
In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split e... In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split experiment is also performed by using the split Hopkinson pressure bar. Then the numerical results correspond closely to those obtained by experiments, and the fracturing damage mode shows that the sample under high strain rate loading would crack along vertical diameter in the band region between two loading edges, which differs from the static damage mode. Furthermore, by comparing a group of contrast numerical tests, the numerical results prove that loading area upon the top side of samples would influence the fracture mode of dynamic split experiments, which indicates that the narrow loading plane is better. 展开更多
关键词 discrete element method dynamic split test brittle material crack band
下载PDF
A Model with Traffic Routers, Dynamically Managing Signal Phases to Address Traffic Congestion in Real Time 被引量:1
20
作者 Rajendra S. Parmar Bhushan Trivedi Aleksandar Stevanovic 《Journal of Transportation Technologies》 2018年第1期75-90,共16页
On-road Vehicular traffic congestion has detrimental effect on three lifelines: Economy, Productivity and Pollution (EPP). With ever increasing population of vehicles on road, traffic congestion is a major challenge t... On-road Vehicular traffic congestion has detrimental effect on three lifelines: Economy, Productivity and Pollution (EPP). With ever increasing population of vehicles on road, traffic congestion is a major challenge to the economy, productivity and pollution, notwithstanding continuous developments in alternative fuels, alternative sources of energy. The research develops accurate and precise model in real time which computes congestion detection, dynamic signaling algorithm to evenly distribute vehicle densities while ensuring avoidance of starvation and deadlock situation. The model incorporates road segment length and breadth, quality and achievable average speed to compute road capacity. Vehicles installed with GPS enabled devices provide their location, which enables computing road occupancy. Road occupancy is evaluated based on number of vehicles as well as area occupied by vehicles. Ratio of road occupancy and road capacity provides congestion index important to compute signal phases. The algorithm ensures every direction is serviced once during a signaling cycle ensuring no starvation. Secondly, the definition of minimum and maximum signal timings ensures against dead lock situation. A simulator is developed to validate the proposition and proves it can ease congestion by more than 50% which is better than any of the contemporary approaches offering 15% improvement. In case of higher congestion index, alternate routes are suggested based on evaluation of traffic density graphs for shortest route or knowledge database. The algorithm to compute shortest route is optimized drastically, reducing computation cost to 3*√2N vis-à-vis computation cost of N2 by classical algorithms. The proposal brings down the cost of implementation per traffic junction from USD 30,000 to USD 2000. 展开更多
关键词 dynamic TRAFFIC Assignment INTELLIGENT Transportation Systems INTELLIGENT Vehicles ROAD TRAFFIC Control ROAD TRAFFIC Sensing TRAFFIC Management VEHICLE DETECTION VEHICLE Routing TRAFFIC Signals Vehicular CONGESTION DETECTION System Vehicular TRAFFIC VEHICLE Mobility Sensors
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部