期刊文献+
共找到16,767篇文章
< 1 2 250 >
每页显示 20 50 100
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
1
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Mechanism of principal stress rotation and deformation failure behavior induced by excavation in roadways
2
作者 Jianping Zuo Zongyu Ma +2 位作者 Chengyi Xu Shuaifei Zhan Haiyan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4605-4624,共20页
The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati... The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state. 展开更多
关键词 roadway stress field Principal stress rotation roadway failure mechanism Failure characteristics
下载PDF
Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock
3
作者 Shijun Zhao Qing Zhang +3 位作者 Yusong Miao Weizhao Zhang Xinbo Zhao Wei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3167-3187,共21页
The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel func... The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity.To address these complexities,this study employs non-local Peridynamics(PD)theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force.Additionally,modifications to the traditional bondbased PD model are made.By considering the micro-structure of coal-rock materials within a uniform discrete model,heterogeneity characterized by bond random pre-breaking is introduced.This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass structures.The established numerical model and simulation method,termed the sub-homogeneous PD model,not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure of roadway surrounding rock.The simulation results obtained using this model show good agreement with field measurements from the Fucun coal mine,effectively validating the model’s capability in accurately reproducing the deformation and failure mode of surrounding rock under bolt-supported(anchor cable).The proposed subhomogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure of roadway surrounding rock in coal mines,offering new insights and potential advancements. 展开更多
关键词 roadway surrounding rock PERIDYNAMICS heterogeneous material fracture analysis numerical simulation
下载PDF
Failure mechanism and safety control technology of a composite strata roadway in deep and soft rock masses:a case study
4
作者 ZHAO Chengwei ZHOU Hui +3 位作者 SUN Xiaoming ZHANG Yong MIAO Chengyu WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2427-2444,共18页
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe... The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways. 展开更多
关键词 3DEC Composite strata roadway Soft rock NPR bolt and cable Asymmetric large deformation
下载PDF
The Impact of Sea Level Rise on Roadway Design and Evacuation Routes in Delaware
5
作者 Jack Palevich Ardeshir Faghri Ahmet Karakurt 《American Journal of Climate Change》 2024年第1期69-82,共14页
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans... As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas. 展开更多
关键词 Sea Level Rise roadway Design Evacuation Routes
下载PDF
Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method
6
作者 JIANG Bei WANG Ming-zi +4 位作者 WANG Qi XIN Zhong-xin XING Xue-yang DENG Yu-song YAO Liang-di 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2467-2487,共21页
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ... Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China. 展开更多
关键词 automatically roadway with non-pillar confined lightweight concrete roof and rib support mechanical model bearing behaviour
下载PDF
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
7
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
The influence of the disturbing effect of roadways through faults on the faults' stability and slip characteristics
8
作者 Shuaifeng Lu Andrew Chan +3 位作者 Xiaolin Wang Shanyong Wang Zhijun Wan Jingyi Cheng 《Deep Underground Science and Engineering》 2024年第4期399-412,共14页
In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanic... In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanical model is introduced to represent various fault angles,followed by a series of PFC2D loading and unloading tests to validate the model and investigate fault instability and crack propagation under different excavation rates and angles.The results show that(1)the theoretical fault model,impacted by roadway advancing,shows a linear reduction in horizontal stress at a rate of-2.01 MPa/m,while vertical stress increases linearly at 4.02 MPa/m.(2)Atfield excavation speeds of 2.4,4.8,7.2,and 9.6 m/day,the vertical loading rates for the model are 2.23,4.47,6.70,and 8.93 Pa/s,respectively.(3)Roadway advancement primarily causes tensile-compressive failures in front of the roadway,with a decrease in tensile cracks as the stress rate increases.(4)An increase in the fault angle leads to denser cracking on the fault plane,with negligible cracking near the fault itself.The dominant crack orientation is approximately 90°,aligned with the vertical stress. 展开更多
关键词 excavation speed fault stability loading and unloading test roadway crossing faults
下载PDF
Surrounding Rock Control Technology of Strong Dynamic Pressure Roadway in Hudi Coal Industry
9
作者 Yixue Jia 《World Journal of Engineering and Technology》 2024年第2期362-372,共11页
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i... Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions. 展开更多
关键词 Deep roadway Combined Support Surrounding Rock Control Soft Rock roadway
下载PDF
3D finite element numerical simulation of advanced detection in roadway for DC focus method 被引量:5
10
作者 邓小康 柳建新 +2 位作者 刘海飞 童孝忠 柳卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2187-2193,共7页
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec... Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method. 展开更多
关键词 roadway DC focus advanced detection finite element method
下载PDF
Three-dimensional calculation of roadway earthwork volume 被引量:1
11
作者 程建川 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期88-91,共4页
To solve the inaccuracy problem caused by the two existing methods (averageend-area method and prismoidal method) used for the calculation of roadway earthwork volume, thispaper puts forward a new concept of the 3-dim... To solve the inaccuracy problem caused by the two existing methods (averageend-area method and prismoidal method) used for the calculation of roadway earthwork volume, thispaper puts forward a new concept of the 3-dimensional algorithm that takes all the roadway geometricdesign procedures as a kind of geometrical operation between the ground model (original terrainmodel) and the roadway model (designed model) under certain constraints, and then presents acomplete 3-dimensional algorithm of roadway earthwork volume as well as its executable computerprogram. The algorithm benefits from the re-triangulation technique of constrained delaunaytriangulation (CDT), which can yield a true volume value theoretically. Through a number ofpractical testscovering varied intervals between adjacent cross sections, it is proven to possess ahigher accuracy compared with that of traditional methods. All the work involved in this paperindicates that the 3-dimensional calculation of roadway earthwork volumeis feasible, more accurateand should have further application in practice. 展开更多
关键词 earthwork volume digital terrain model (DTM) constrained delaunaytriangulation (CDT) roadway design CALCULATION
下载PDF
基于地质雷达的巷道松动圈探测图像优化分析及支护改进
12
作者 路燕泽 马宁 +3 位作者 于庆磊 张金鹏 王社光 刘阳 《煤炭技术》 CAS 2025年第1期93-98,共6页
以河北中关铁矿井下巷道为工程背景,开展松动圈探测及图像处理优化分析及支护改进。首先依据雷达探测原理,提出了针对金属矿山井下巷道的松动圈探测方案,并优化了雷达探测图像处理方法;然后对探测结果进行了详细分析,讨论了不同岩性及... 以河北中关铁矿井下巷道为工程背景,开展松动圈探测及图像处理优化分析及支护改进。首先依据雷达探测原理,提出了针对金属矿山井下巷道的松动圈探测方案,并优化了雷达探测图像处理方法;然后对探测结果进行了详细分析,讨论了不同岩性及不同埋深水平对巷道松动圈范围的影响。研究结果表明:采用探地雷达可以有效测得井下巷道松动圈范围,中关铁矿井下巷道松动圈分布复杂多变,巷道岩性越差,埋深越大,松动圈范围越大,反之亦然。依据松动圈范围和锚杆作用机理,在岩性较差的围岩段,松动圈厚度范围超过2.5 m,应优化支护方案采用长度更长的锚杆并加密锚杆间距。 展开更多
关键词 地质雷达 巷道围岩 松动圈探测 图像优化分析 支护优化
下载PDF
近距离煤层采空区下回采巷道快速掘进技术研究
13
作者 韩锦城 谢昌雄 +3 位作者 王旭锋 常泽超 武晋雄 潘昱彬 《煤炭技术》 CAS 2025年第1期37-43,共7页
针对上榆泉煤矿近距离煤层群赋存情况,考虑I031005回采巷道上覆9#煤层采空区的影响,采用现场调研、数值模拟以及理论分析相结合的方法,在保证回采巷道围岩稳定的情况下,提出了“锚杆支护参数优化+设备改进+工艺流程优化”的快速掘进综... 针对上榆泉煤矿近距离煤层群赋存情况,考虑I031005回采巷道上覆9#煤层采空区的影响,采用现场调研、数值模拟以及理论分析相结合的方法,在保证回采巷道围岩稳定的情况下,提出了“锚杆支护参数优化+设备改进+工艺流程优化”的快速掘进综合技术体系。研究结果表明:基于层次分析法建立下煤层回采巷道快速掘进影响因素综合评价体系,明确影响巷道掘进速度的重要因素巷道地质条件和支护工艺;10^(#)煤层巷道基本不受9^(#)煤层遗留煤柱集中应力影响,且围岩完整性好,强度高,适当增加单根锚杆强度,减小锚杆间排距不影响回采巷道围岩稳定,锚杆合理间排距为1500 mm×1200 mm,锚杆长度为1800 mm;优化支护参数后支护时间显著降低,巷道单排支护时间由30 min降低至22 min,提高单次掘锚循环进尺提高至1.2 m;提出滑移架与截割装置相连的结构,优化循环作业方式,使掘锚同步作业,掘支平行作业率可增加42.7%;巷道月平均进尺可由750 m增至1080 m,增幅44%。研究结果可为类似条件矿井回采巷道快速掘进提供借鉴。 展开更多
关键词 近距离煤层 回采巷道 快速掘进 支护参数优化 施工工艺优化
下载PDF
纵轴岩巷掘进机截割部故障分析
14
作者 陈效栋 朱阳阳 《煤矿机械》 2025年第1期178-180,共3页
主要介绍了纵轴岩巷掘进机截割部的组成和工作原理。通过对截割部结构分析,结合现场经验,总结了一些常出现的故障现象,对其原因进行分析并提出应对措施,可以帮助维修人员快速判断和解决问题,也为截割部的设计提供依据。
关键词 掘进机 岩巷 截割部 故障分析
下载PDF
三元石窟煤矿顶板淋水区域注浆封堵与锚索支护技术
15
作者 郭亨通 《煤矿现代化》 2025年第1期25-29,共5页
传统支护技术在三元石窟煤业软岩淋水巷道中的应用效果不佳,采用注浆封堵与锚索支护工艺对巷道顶板支护技术进行改进。依托FLAC 3D数值模拟软件分析了1、5、10 MPa注浆压力与300、400、500 mm封孔长度条件下的锚索孔围岩变形量与封孔段... 传统支护技术在三元石窟煤业软岩淋水巷道中的应用效果不佳,采用注浆封堵与锚索支护工艺对巷道顶板支护技术进行改进。依托FLAC 3D数值模拟软件分析了1、5、10 MPa注浆压力与300、400、500 mm封孔长度条件下的锚索孔围岩变形量与封孔段围岩最大主应力的分布特征。在井下开展拉拔试验测试支护体力学性能,开展工业试验验证。结果表明:锚索孔围岩位移量随浆液压力的提升而增加。软弱粉砂岩条件下的注浆压力不宜大于5 MPa。封孔长度应以围岩的裂隙发育位置作为考量标准,当裂隙发育位置位于围岩深部区域时,封孔长度应相对较长,反之亦然。封孔长度的增加有利于提升锚索的抗拉强度。在现场实施注浆封堵与锚索支护工艺的50 d后,围岩变形基本达到稳定,且淋水现象大幅降低。 展开更多
关键词 巷道支护 围岩变形 巷道淋水 注浆锚固
下载PDF
伊犁四矿弱胶结软岩巷道围岩控制技术研究及应用
16
作者 张官禹 黄其文 张斌 《煤炭技术》 CAS 2025年第1期52-56,共5页
以新疆伊犁四矿21113工作面为工程背景,通过理论分析、数值模拟以及现场实测等手段,围绕浅埋弱胶结软岩巷道破坏特征及控制技术展开了一系列研究,研究结果表明:伊犁四矿弱胶结软岩巷道围岩变形特点为自稳时间短、应力释放明显,泥岩遇水... 以新疆伊犁四矿21113工作面为工程背景,通过理论分析、数值模拟以及现场实测等手段,围绕浅埋弱胶结软岩巷道破坏特征及控制技术展开了一系列研究,研究结果表明:伊犁四矿弱胶结软岩巷道围岩变形特点为自稳时间短、应力释放明显,泥岩遇水易软化、出现无征兆冒顶,岩体自重大、顶板出现下沉,支护结构受力不耦合、支护单元破坏等。根据围岩变形特点提出了对巷道围岩及时支护、喷浆封闭、拱形断面、加长支护的联合支护技术,经过现场工业性试验以及观测数据证明,该联合支护方案,能够很好地控制巷道变形,21113上顺槽巷道从开始回采到结束未出现瞬发变形、顶板切落、锚杆(索)断裂及钢带撕裂等情况,巷道变形及维护满足工作面顺槽的使用要求。可为伊犁矿区弱胶结软岩巷道支护设计和施工提供指导作用。 展开更多
关键词 弱胶结软岩 巷道支护 联合支护 控制技术
下载PDF
Floor stress evolution laws and its effect on stability of floor roadway 被引量:20
17
作者 Zhang Hualei Cao Jianjun Tu Min 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期631-636,共6页
According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.... According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock. 展开更多
关键词 FLOOR Mining abutment pressure Floor roadway Cracks evolution mechanisms
下载PDF
Floor heave in the west wing track haulage roadway of the Tingnan Coal Mine: Mechanism and control 被引量:18
18
作者 Wang Jiong Guo Zhibiao +2 位作者 Yan Yubiao Pang Jiewen Zhao Shujiang 《International Journal of Mining Science and Technology》 SCIE EI 2012年第3期295-299,共5页
Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to... Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave. 展开更多
关键词 roadway floor heave Engineering soft rock Control measures
下载PDF
Study on Repairing Permanent Transportation Roadway in Deep Mining by Bolt-Shotcrete and Mesh Supporting 被引量:10
19
作者 宋宏伟 鹿守敏 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期167-171,共5页
The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production... The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production performance and safety. Based on analysis of supporting objects for roadway repairing, this paper proposes the supporting parameters and condruction technics. The industrial ted of 70m long roadway repairing shows that the proposed parameters and technics of bolt shotcrete and mesh support for roadway repairing are reasouable, bring good technical and economic results for the colliery, and the repairing is successful. 展开更多
关键词 roadway repairing soft ROCK support bolt-shotcrete SUPPORTING broken ROCK zone
下载PDF
Non-destructive testing and pre-warning analysis on the quality of bolt support in deep roadways of mining districts 被引量:13
20
作者 Zhang Houquan Miao Xiexing +2 位作者 Zhang Guimin Wu Yu Chen Yanlong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期989-998,共10页
The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non... The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization. 展开更多
关键词 Deep roadways BOLT support QUALITY RANDOM NONDESTRUCTIVE testing SURROUNDING ROCK stability Prediction and pre-warning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部