In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing ...In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing from the traditional matrix encoding strategy,DMES dynamically chose the size of each message group in a given set of adoptable message sizes.The appearance possibilities of all adoptable sizes were set in accordance with the desired embedding performance(embedding rate or bit-change rate).Accordingly,a searching algorithm that could provide an optimal combination of appearance possibilities was proposed.Furthermore,the roulette wheel algorithm was employed to determine the size of each message group according to the optimal combination of appearance possibilities.The effectiveness of DMES was evaluated in StegVoIP,which is a typical covert communication system based on VoIP.The experimental results demonstrate that DMES can adjust embedding capacity and embedding transparency effectively and flexibly,and achieve the desired embedding performance in any case.For the desired embedding rate,the average errors are not more than 0.000 8,and the standard deviations are not more than 0.002 0;for the desired bit-change rate,the average errors are not more than 0.001 4,and the standard deviations are not more than 0.002 6.展开更多
The dynamic stiffness method and Transfer method is applied to study the vibration characteristics of the Euler-Bernoulli pipe conveying fluid in this paper. According to the dynamics equation of the pipe conveying fl...The dynamic stiffness method and Transfer method is applied to study the vibration characteristics of the Euler-Bernoulli pipe conveying fluid in this paper. According to the dynamics equation of the pipe conveying fluid, the element dynamic stiffness is established. The vibration characteristic of the single-span pipe is analyzed under two kinds of boundary conditions. The results compared with the literature, which has a good consistency. Based on this method, natural frequency and the critical speed of the two types of multi-span pipe are deserved. This paper shows that the dynamic stiffness method and transfer matrix is an effective method to deal with the vibration problem of pipe conveying fluid.展开更多
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equa...There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements.展开更多
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite ...Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.展开更多
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud...In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.展开更多
Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of contro...Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according...Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.展开更多
In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950...In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles.展开更多
The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine t...The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools.展开更多
Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydro...Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.展开更多
Dynamic stiffness matrix method is applied to compute vibration of hull girder in this paper. This method can not only simplify the computational model, but also get much higher frequencies and responses accurately. T...Dynamic stiffness matrix method is applied to compute vibration of hull girder in this paper. This method can not only simplify the computational model, but also get much higher frequencies and responses accurately. The analytical expressions of dynamic stiffness matrix of a Timoshenko beam for transverse vibration are presented in this paper. All effects of rotatory inertia and shear deformation are taken into account in the formulation. The resulting dynamic stiffness matrix combined with the Wittrick-Williams algorithm is used to compute natural frequencies and mode shapes of the 299,500 DWT VLCC, and then the vibrational responses are solved by the mode superposition method. The computational results are compared with those obtained from other approximate methods and experiment, and it indicates that the method is accurate and efficient.展开更多
Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic ...Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.展开更多
The present work includes the study of the dynamic properties of the nanocomposites specimens. The dynamic properties of A356/Al2O3 nanocomposites were investigated through different fabrication conditions. The A356/A...The present work includes the study of the dynamic properties of the nanocomposites specimens. The dynamic properties of A356/Al2O3 nanocomposites were investigated through different fabrication conditions. The A356/Al2O3 nanocomposites specimens were fabricated using a combination between the rheocasting and squeeze casting routes. The composites were reinforced with Al2O3 particulates of 60 and 200 nm and different volume fractions up to 5 vol.%. The dynamic properties of the A356/Al2O3 nanocomposites were investigated through measuring the dynamic properties of specimens. Free vibration method is used to measure frequency response (fn ), and damping factor (ξ). The viscoelastic properties such as loss factor η, storage modulus (E'), and loss modulus (E") were obtained. The results concluded that, the dynamic properties of nanocomposites were improved by increasing the volume fractions of nanoparticulates and decreasing the nanoparticulates size. The results indicated also that, the damping factor, and the related parameters (η, E' and E") was strongly affected by increasing both volume fraction and the particulates.展开更多
Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot...Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.展开更多
The expressions of matrix construction by using the singular value decomposition (SVD) are applied to the physics parameter identification of dynamic model. Then, based upon to the characteristics of a kind of matrix ...The expressions of matrix construction by using the singular value decomposition (SVD) are applied to the physics parameter identification of dynamic model. Then, based upon to the characteristics of a kind of matrix construction method, the orders of the parameter identification model can be reduced. After reducing, the mathematics and physics correspondence relations between the subsystem and the original system are distinct. the condensation errors can be avoided. The numerical example shows the benefit of the presented methodology.展开更多
This paper studies the exponential stability of interval time-varying dynamical system with multidelay. By the matrix measure and delay differential inequality, some sufficient conditions for exponential stability of ...This paper studies the exponential stability of interval time-varying dynamical system with multidelay. By the matrix measure and delay differential inequality, some sufficient conditions for exponential stability of interval time-varying dynamical system with multidelay are established. These conditions are an improvement and extension of the results achieved in earlier papers. Finally, a numerical example is given to demonstrate our result.展开更多
Using the matrix measure and delay differential inequality, the sufficient conditions were obtained for exponential stability of interval dynamical system with multidelay. These conditions are an improvement and exten...Using the matrix measure and delay differential inequality, the sufficient conditions were obtained for exponential stability of interval dynamical system with multidelay. These conditions are an improvement and extension of the results achieved in earlier papers presented by LIAO, LIU, ZHANG, SUN, et al.展开更多
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金Project(2009AA01A402) supported by the National High-Tech Research and Development Program of ChinaProject(NCET-06-0650) supported by Program for New Century Excellent Talents in University Project(IRT-0725) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing from the traditional matrix encoding strategy,DMES dynamically chose the size of each message group in a given set of adoptable message sizes.The appearance possibilities of all adoptable sizes were set in accordance with the desired embedding performance(embedding rate or bit-change rate).Accordingly,a searching algorithm that could provide an optimal combination of appearance possibilities was proposed.Furthermore,the roulette wheel algorithm was employed to determine the size of each message group according to the optimal combination of appearance possibilities.The effectiveness of DMES was evaluated in StegVoIP,which is a typical covert communication system based on VoIP.The experimental results demonstrate that DMES can adjust embedding capacity and embedding transparency effectively and flexibly,and achieve the desired embedding performance in any case.For the desired embedding rate,the average errors are not more than 0.000 8,and the standard deviations are not more than 0.002 0;for the desired bit-change rate,the average errors are not more than 0.001 4,and the standard deviations are not more than 0.002 6.
文摘The dynamic stiffness method and Transfer method is applied to study the vibration characteristics of the Euler-Bernoulli pipe conveying fluid in this paper. According to the dynamics equation of the pipe conveying fluid, the element dynamic stiffness is established. The vibration characteristic of the single-span pipe is analyzed under two kinds of boundary conditions. The results compared with the literature, which has a good consistency. Based on this method, natural frequency and the critical speed of the two types of multi-span pipe are deserved. This paper shows that the dynamic stiffness method and transfer matrix is an effective method to deal with the vibration problem of pipe conveying fluid.
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
基金Supported by National Natural Science Foundation of China(Grant No.51175422)
文摘There are vast constraint equations in conventional dynamics analysis of deployable structures,which lead to differential-algebraic equations(DAEs)solved hard.To reduce the difficulty of solving and the amount of equations,a new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements(SLEs)is presented.Firstly,a precise model of a flexible bar of SLE is established by the higher order shear deformable beam element based on the absolute nodal coordinate formulation(ANCF),and the master/slave freedom method is used to obtain the dynamics equations of SLEs without constraint equations.Secondly,according to features of deployable structures,the specification matrix method(SMM)is proposed to eliminate the constraint equations among SLEs in the frame of ANCF.With this method,the inner and the boundary nodal coordinates of element characteristic matrices can be separated simply and efficiently,especially on condition that there are vast nodal coordinates.So the element characteristic matrices can be added end to end circularly.Thus,the dynamic model of deployable structure reduces dimension and can be assembled without any constraint equation.Next,a new iteration procedure for the generalized-a algorithm is presented to solve the ordinary differential equations(ODEs)of deployable structure.Finally,the proposed methodology is used to analyze the flexible multi-body dynamics of a planar linear array deployable structure based on three scissor-like elements.The simulation results show that flexibility has a significant influence on the deployment motion of the deployable structure.The proposed methodology indeed reduce the difficulty of solving and the amount of equations by eliminating redundant degrees of freedom and the constraint equations in scissor-like elements and among scissor-like elements.
基金Project supported by the National Natural Science Foundation of China (No.10272024).
文摘Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data.
基金supported by the Natural Science Foundation of China Government (10902051)the Natural Science Foundation of Jiangsu Province (BK2008046)the German Science Foundation
文摘In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
基金Project(N160704004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,China
文摘Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.61272279)the TianYuan Special Funds of the National Natural Science Foundation of China(Grant No.11326239)+1 种基金the Higher School Science and Technology Research Project of Inner Mongolia,China(Grant No.NJZY13119)the Inner Mongolia University of Technology,China(Grant No.ZD201221)
文摘Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.
基金financial supports from the National Natural Science Foundation of China (No. 51871184)the Natural Science Foundation of Shandong Province, China (No. ZR2019MEM037)+1 种基金the Zhoucun School-City Integration Development Plan, China (No. 2020ZCXCZH03)the School-city Integration Development Project of Zibo, China (No. 2019ZBXC022)。
文摘In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles.
基金supported by National Key Technology R&D Program of China (Grant No. 2006BAF01B09)the Research Fund for Doctoral Program of Higher Education of China (Grant No. 200800060010)
文摘The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools.
基金supported by the National Natural Science Foundation of China,No.31071222Jilin Province Science and Technology Development Project in China,No.20080738the Frontier Interdiscipline Program of Norman Bethune Health Science Center of Jilin University in China,No.2013106023
文摘Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.
文摘Dynamic stiffness matrix method is applied to compute vibration of hull girder in this paper. This method can not only simplify the computational model, but also get much higher frequencies and responses accurately. The analytical expressions of dynamic stiffness matrix of a Timoshenko beam for transverse vibration are presented in this paper. All effects of rotatory inertia and shear deformation are taken into account in the formulation. The resulting dynamic stiffness matrix combined with the Wittrick-Williams algorithm is used to compute natural frequencies and mode shapes of the 299,500 DWT VLCC, and then the vibrational responses are solved by the mode superposition method. The computational results are compared with those obtained from other approximate methods and experiment, and it indicates that the method is accurate and efficient.
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.2012AA052903)
文摘Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.
文摘The present work includes the study of the dynamic properties of the nanocomposites specimens. The dynamic properties of A356/Al2O3 nanocomposites were investigated through different fabrication conditions. The A356/Al2O3 nanocomposites specimens were fabricated using a combination between the rheocasting and squeeze casting routes. The composites were reinforced with Al2O3 particulates of 60 and 200 nm and different volume fractions up to 5 vol.%. The dynamic properties of the A356/Al2O3 nanocomposites were investigated through measuring the dynamic properties of specimens. Free vibration method is used to measure frequency response (fn ), and damping factor (ξ). The viscoelastic properties such as loss factor η, storage modulus (E'), and loss modulus (E") were obtained. The results concluded that, the dynamic properties of nanocomposites were improved by increasing the volume fractions of nanoparticulates and decreasing the nanoparticulates size. The results indicated also that, the damping factor, and the related parameters (η, E' and E") was strongly affected by increasing both volume fraction and the particulates.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.
文摘The expressions of matrix construction by using the singular value decomposition (SVD) are applied to the physics parameter identification of dynamic model. Then, based upon to the characteristics of a kind of matrix construction method, the orders of the parameter identification model can be reduced. After reducing, the mathematics and physics correspondence relations between the subsystem and the original system are distinct. the condensation errors can be avoided. The numerical example shows the benefit of the presented methodology.
文摘This paper studies the exponential stability of interval time-varying dynamical system with multidelay. By the matrix measure and delay differential inequality, some sufficient conditions for exponential stability of interval time-varying dynamical system with multidelay are established. These conditions are an improvement and extension of the results achieved in earlier papers. Finally, a numerical example is given to demonstrate our result.
文摘Using the matrix measure and delay differential inequality, the sufficient conditions were obtained for exponential stability of interval dynamical system with multidelay. These conditions are an improvement and extension of the results achieved in earlier papers presented by LIAO, LIU, ZHANG, SUN, et al.