The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super- critical well potential are investigated in detail. The results show that only when the switching on...The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super- critical well potential are investigated in detail. The results show that only when the switching on and switching off time both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number's saturation. The slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching off.展开更多
The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical ...The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core.展开更多
We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions....We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions. The cavity frequency is harmonically modulated in time for both the cases. The main quantity of interest is the number of intracavity scattered photons. The system has been investigated under the weak and strong modulations. It has been observed that the amplitude of the scattered photons is more for the classical mirror motion than the quantized mirror motion. Also, initially, the amplitude of scattered photons is high for lower modulation amplitude than higher modulation amplitude. We also found that the behavior of the plots are similar under strong and weak modulations for the quantized mirror motion.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
The dynamics of blood lead (Pb-B) and blood zinc protoporphyrin (ZPP-B) of women in early pregnancy and parturient women with lead exposure and the effects on fetus development were investigated. Pb-B of lead-exposed ...The dynamics of blood lead (Pb-B) and blood zinc protoporphyrin (ZPP-B) of women in early pregnancy and parturient women with lead exposure and the effects on fetus development were investigated. Pb-B of lead-exposed women was high: 0.984 μmol/L (20.38 μg/dl) and ZPP was 84.52μg/dl. Cord blood Pb-B was 0.896 μmol/L(18.56μg/dl)and cord blood ZPP was 69.24μg/dl. In the control group, Pb-B was 0.261μmol/L(5.41μg/dl), ZPP-B, 37.59 μg/dl, cord blood, Pb-B 0.34 μmol/L (7.93 μg/dl), and cord ZPP-B 49.0μg/dl. There was a significant correlation between blood lead and blood ZPP, maternal Pb-B and cord Pb-B, maternal Pb-B and cord ZPP-B. The significance of the consistency of high level Pb-B and the effects on fetus development is discussed.展开更多
We present analytical solutions describing quantized vacuum field in a one-dimensional cavity with one of its two mirrors fixed and another vibrating in simple harmonic form. These solutions are accurate up to the sec...We present analytical solutions describing quantized vacuum field in a one-dimensional cavity with one of its two mirrors fixed and another vibrating in simple harmonic form. These solutions are accurate up to the second order of the oscillating magnitude and they are uniformly valid for all time. We obtain the simple analytical expression for the energy density of the field which explicitly manifests that for a cavity vibrating at its -th eigenfrequency, traveling wave packets emerge in the finite part of the field energy density, and their amplitudes grow while their widths shrink in time, representing a large concentration of energy. The finite part of the field energy density originating from the oscillations is shown to be proportional to the factor .展开更多
This study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel da...This study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel data techniques.This is the first study on capital mobility in Latin American and Caribbean countries to employ the recently developed panel data procedure of the dynamic common correlated effects modeling technique of Chudik and Pesaran(J Econ 188:393–420,2015)and the error-correction testing of Gengenbach,Urbain,and Westerlund(Panel error correction testing with global stochastic trends,2008,J Appl Econ 31:982–1004,2016).These approaches address the serious panel data econometric issues of crosssection dependence,slope heterogeneity,nonstationarity,and endogeneity in a multifactor error-structure framework.The empirical findings of this study reveal a low average(mean)savings–retention coefficient for the panel as a whole and for most individual countries,as well as indicating a cointegration relationship between saving and investment ratios.The results indicate that there is a relatively high degree of capital mobility in the Latin American and Caribbean countries in the short run,while the long-run solvency condition is maintained,which is due to reduced frictions in goods and services markets causing increase competition.Increased capital mobility in these countries can promote economic growth and hasten the process of globalization by creating a conducive economic environment for FDI in these countries.展开更多
We investigate the dynamics of parity-and time-reversal(PT) symmetric two-energy-level atoms in the presence of two optical and one radio-frequency fields. The strength and relative phase of fields can drive the sys...We investigate the dynamics of parity-and time-reversal(PT) symmetric two-energy-level atoms in the presence of two optical and one radio-frequency fields. The strength and relative phase of fields can drive the system from the unbroken to the broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of the unbroken symmetry. At the exception point, the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find that the emergence of the PT components of the fixed points is the feature of the PT symmetry breaking and the projections in the x–y plane can be controlled with high flexibility compared with the standard two-level system with the PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.展开更多
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to...This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numer- ical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturba- tion for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.展开更多
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio...An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.展开更多
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of...Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.展开更多
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s...In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.展开更多
The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are o...The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.展开更多
The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under th...The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented.展开更多
Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land...Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land sub-sidence and ground fissures. According to the dynamic characteristics of groundwater levels, some advice about groundwater exploitation is offered. Our research will provide a basis for using groundwater resources and the preven- tion of geological disasters in Jiangyin city and the Suzhou-Wuxi-Changzhou area. The following results are deduced from our research. First, groundwater levels vary with the exploitation of groundwater in Jiangyin city and are affected by hydrogeological conditions. The groundwater levels remained rather stable before and after the implementation of control of groundwater exploitation in the northwest of Jiangyin city along the Yangtze River. A suitable level of exploitation should be allowed. In the southeast, the speed of recovery of the groundwater level has been rather rapid after the control of exploitation. We conclude that groundwater might be exploited locally after the groundwater level has recovered. In the southwest, the speed of recovery of the groundwater level is rather slow and exploitation of ground-water should be prohibited. Second, groundwater quality is stable in Jiangyin city and the contents of the main chemical indices of groundwater varied only slightly before and after the control of exploitation. Third, after controlling the exploitation, the speed of land subsidence has clearly slowed down and the development of ground fissures has been controlled effectively.展开更多
A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriat...A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.展开更多
While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct ...While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.展开更多
In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using G...In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.展开更多
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragmen...Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11725417 and 11575027)NSAF(Grant No.U1730449)the Science Challenge Project(Grant No.TZ2018005)
文摘The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super- critical well potential are investigated in detail. The results show that only when the switching on and switching off time both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number's saturation. The slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching off.
文摘The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core.
文摘We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions. The cavity frequency is harmonically modulated in time for both the cases. The main quantity of interest is the number of intracavity scattered photons. The system has been investigated under the weak and strong modulations. It has been observed that the amplitude of the scattered photons is more for the classical mirror motion than the quantized mirror motion. Also, initially, the amplitude of scattered photons is high for lower modulation amplitude than higher modulation amplitude. We also found that the behavior of the plots are similar under strong and weak modulations for the quantized mirror motion.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
文摘The dynamics of blood lead (Pb-B) and blood zinc protoporphyrin (ZPP-B) of women in early pregnancy and parturient women with lead exposure and the effects on fetus development were investigated. Pb-B of lead-exposed women was high: 0.984 μmol/L (20.38 μg/dl) and ZPP was 84.52μg/dl. Cord blood Pb-B was 0.896 μmol/L(18.56μg/dl)and cord blood ZPP was 69.24μg/dl. In the control group, Pb-B was 0.261μmol/L(5.41μg/dl), ZPP-B, 37.59 μg/dl, cord blood, Pb-B 0.34 μmol/L (7.93 μg/dl), and cord ZPP-B 49.0μg/dl. There was a significant correlation between blood lead and blood ZPP, maternal Pb-B and cord Pb-B, maternal Pb-B and cord ZPP-B. The significance of the consistency of high level Pb-B and the effects on fetus development is discussed.
文摘We present analytical solutions describing quantized vacuum field in a one-dimensional cavity with one of its two mirrors fixed and another vibrating in simple harmonic form. These solutions are accurate up to the second order of the oscillating magnitude and they are uniformly valid for all time. We obtain the simple analytical expression for the energy density of the field which explicitly manifests that for a cavity vibrating at its -th eigenfrequency, traveling wave packets emerge in the finite part of the field energy density, and their amplitudes grow while their widths shrink in time, representing a large concentration of energy. The finite part of the field energy density originating from the oscillations is shown to be proportional to the factor .
文摘This study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel data techniques.This is the first study on capital mobility in Latin American and Caribbean countries to employ the recently developed panel data procedure of the dynamic common correlated effects modeling technique of Chudik and Pesaran(J Econ 188:393–420,2015)and the error-correction testing of Gengenbach,Urbain,and Westerlund(Panel error correction testing with global stochastic trends,2008,J Appl Econ 31:982–1004,2016).These approaches address the serious panel data econometric issues of crosssection dependence,slope heterogeneity,nonstationarity,and endogeneity in a multifactor error-structure framework.The empirical findings of this study reveal a low average(mean)savings–retention coefficient for the panel as a whole and for most individual countries,as well as indicating a cointegration relationship between saving and investment ratios.The results indicate that there is a relatively high degree of capital mobility in the Latin American and Caribbean countries in the short run,while the long-run solvency condition is maintained,which is due to reduced frictions in goods and services markets causing increase competition.Increased capital mobility in these countries can promote economic growth and hasten the process of globalization by creating a conducive economic environment for FDI in these countries.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11104171,11404199,11574187 and 11604188the Youth Science Foundation of Shanxi Province of China under Grant No 2012021003-1the Natural Science Foundation for Youths of Shanxi Province under Grant Nos 201601D201027 and 1331KSC
文摘We investigate the dynamics of parity-and time-reversal(PT) symmetric two-energy-level atoms in the presence of two optical and one radio-frequency fields. The strength and relative phase of fields can drive the system from the unbroken to the broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of the unbroken symmetry. At the exception point, the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find that the emergence of the PT components of the fixed points is the feature of the PT symmetry breaking and the projections in the x–y plane can be controlled with high flexibility compared with the standard two-level system with the PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.
文摘This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numer- ical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturba- tion for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
基金supported by Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42122033,41875055,and 42075006)Guangzhou Science and Technology Plan Projects(202002030346 and 202002030196).
文摘An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale.
基金Key Research Project of National Natural Science Foundation of China Under Grant No.90715018National Basic Research Program of China Under Grant No.2007CB714200the Special Fund for the Commonweal Industry of China Under Grant No.200808022
文摘Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.
基金This research was funded by the National Natural Science Foundation of China(No.52174081)the China Postdoctoral Science Foundation(No.2021M702001)+1 种基金the Postdoctoral Innovation Project of Shandong Province(No.202102002)the Natural Science Foundation of Shandong Province(No.2019GSF111036).
文摘In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.
基金This work was financially supported by the National Natural Science Foundation of China (No.10272003, No. 10032010, and No. 10372004) the Talent Foundation of the University of Sciences and Technology Beijing.
文摘The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.
基金financially supported by the National Natural Science Foundation of China (No. 42102149)the Fundamental Research Funds for the Central Universities (No. 2462021YXZZ005)。
文摘The relationship between capillary pressure and saturation plays a critical role in the characterization of two-phase flow and transport in aquifers and oil reservoirs. This relationship is usually determined under the static condition, where capillary pressure is the only function of saturation. However,considerable experiments have suggested that the dependence of capillary pressure on desaturation rate is under the dynamic condition. Thus, a more general description of capillary pressure that includes dynamic capillary effect has been approved widely. A comprehensive understanding of the dynamic capillary effect is needed for the investigation of the two-phase flow in porous media by various methods. In general, dynamic capillary effect in porous media can be studied through the laboratory experiment, pore-to macro-scale modeling, and artificial neural network. Here, main principle and research procedures of each method are reviewed in detail. Then, research progress, disadvantages and advantages are discussed, respectively. In addition, upscaling study from pore-to macro-scale are introduced, which explains the difference between laboratory experiment and pore-scale modeling. At last, several future perspectives and recommendations for optimal solution of dynamic capillary effect are presented.
基金Projects 2002CB412702 supported by the Special Funds for Major State Basic Research Projects of China and KZCX2-YW-113the Special Funds ofResearch Innovation Projects of CAS
文摘Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land sub-sidence and ground fissures. According to the dynamic characteristics of groundwater levels, some advice about groundwater exploitation is offered. Our research will provide a basis for using groundwater resources and the preven- tion of geological disasters in Jiangyin city and the Suzhou-Wuxi-Changzhou area. The following results are deduced from our research. First, groundwater levels vary with the exploitation of groundwater in Jiangyin city and are affected by hydrogeological conditions. The groundwater levels remained rather stable before and after the implementation of control of groundwater exploitation in the northwest of Jiangyin city along the Yangtze River. A suitable level of exploitation should be allowed. In the southeast, the speed of recovery of the groundwater level has been rather rapid after the control of exploitation. We conclude that groundwater might be exploited locally after the groundwater level has recovered. In the southwest, the speed of recovery of the groundwater level is rather slow and exploitation of ground-water should be prohibited. Second, groundwater quality is stable in Jiangyin city and the contents of the main chemical indices of groundwater varied only slightly before and after the control of exploitation. Third, after controlling the exploitation, the speed of land subsidence has clearly slowed down and the development of ground fissures has been controlled effectively.
基金supported by NSF of China (10901065, 10971225, and11028102)the NSF Grants 1025422 and 0731201the Cheung Kong Scholars Program, and an open research grant from the State Key Laboratory for Nonlinear Mechanics at the Chinese Academy of Sciences
文摘A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.
基金University of Queensland International Scholarship(UQI)for its support(Grant No.42719692)。
文摘While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.
基金Project(2019zzts525)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(U1837207,U1637601)supported by the National Natural Science Foundation of China
文摘In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.
基金the Independent Research Subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No.SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No.CXZZ13_0947)+1 种基金Top-Notch Academic Programs of Jiangsu Higher Education Institutionsthe Priority Academic Development Program of Jiangsu Higher Education Institutions
文摘Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.