The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu...Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.展开更多
Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation t...Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation to exploring the mechanism of earthquake triggering,earthquake prediction,and the desire to use the mechanism of earthquake triggering to reduce,prevent,or trigger earthquakes.Natural earthquakes and large‐scale explosions are the most common sources of dynamic disturbances that trigger earthquakes.In the past several decades,some models have been developed,including static,dynamic,quasi‐static,and other models.Some reviews have been published,but explosiontriggered seismicity was not included.In recent years,some new results on earthquake triggering have emerged.Therefore,this paper presents a new review to reflect the new results and include the content of explosion‐triggered earthquakes for the reference of scholars in this area.Instead of a complete review of the relevant literature,this paper primarily focuses on the main aspects of dynamic earthquake triggering on a tectonic scale and makes some suggestions on issues that need to be resolved in this area in the future.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, whic...The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calculation of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully selected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error involved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments. The two waves have been integrated for more than 300 days and 100 days respectively by using the model and both of them are propagating westward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model's troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days espectively.The explanation of this interesting phenomena is still under investigation.展开更多
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dyn...This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.展开更多
It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that...It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts: orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.展开更多
A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated fro...A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated from the point of hybrid systems.The proposed scheme makes full use of the modeling power of mixed logical dy- namical(MLD)systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system,and takes advantage of the good control quality of model predictive control(MPC) to design a controller.Thus,this approach avoids oscillation during switching between sub-systems,helps to relieve shaking in transition,and augments the stability robustness of the whole system,and finally achieves optimal(i.e. fast and smooth)transition between operating points.The simulation results demonstrate that the presented ap- proach has a satisfactory performance.展开更多
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi′s fractional...With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi′s fractional model.Firstly,based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group,the exact invariants are given.Secondly,on the basis of the definition of higher order adiabatic invariants of a dynamical system,the adiabatic invariants of the Noether symmetric perturbation for disturbed generalized El-Nabulsi′s fractional Birkhoff system are presented under some conditions,and some special cases are discussed.Finally,an example known as Hojman-Urrutia problem is given to illustrate the application of the results.展开更多
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find ...We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.展开更多
The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r...The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.展开更多
Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithm...Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithms in battery management systems is usually based on battery models,which interpret crucial battery dynamics through the utilization of mathematical functions.Therefore,the investigation of battery dynamics with the purpose of battery system identification has garnered considerable attention in the realm of battery research.Characterization methods in terms of linear and nonlinear response of lithium-ion batteries have emerged as a prominent area of study in this field.This review has undertaken an analysis and discussion of characterization methods,with a particular focus on the motivation of battery system identification.Specifically,this work encompasses the incorporation of frequency domain nonlinear characterization methods and dynamics-based battery electrical models.The aim of this study is to establish a connection between the characterization and identification of battery systems for researchers and engineers specialized in the field of batteries,with the intention of promoting the advancement of efficient battery technology for real-world applications.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif...The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.展开更多
By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering...By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co...The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers.展开更多
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
基金Major Program of the National Natural Science Foundation of China under Grant No.52192675 and the 111 Project of China under Grant No.D21001。
文摘Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.
基金supported by the National Natural Science Foundation of China(NSFC grants No.12172036,51774018)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,IRT_17R06)+2 种基金the Russian Foundation for Basic Research,Grant Number 20‐55‐53032Russian State Task number 1021052706247‐7‐1.5.4the Government of Perm Krai,research project No.С‐26/628.
文摘Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation to exploring the mechanism of earthquake triggering,earthquake prediction,and the desire to use the mechanism of earthquake triggering to reduce,prevent,or trigger earthquakes.Natural earthquakes and large‐scale explosions are the most common sources of dynamic disturbances that trigger earthquakes.In the past several decades,some models have been developed,including static,dynamic,quasi‐static,and other models.Some reviews have been published,but explosiontriggered seismicity was not included.In recent years,some new results on earthquake triggering have emerged.Therefore,this paper presents a new review to reflect the new results and include the content of explosion‐triggered earthquakes for the reference of scholars in this area.Instead of a complete review of the relevant literature,this paper primarily focuses on the main aspects of dynamic earthquake triggering on a tectonic scale and makes some suggestions on issues that need to be resolved in this area in the future.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
文摘The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calculation of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully selected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error involved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments. The two waves have been integrated for more than 300 days and 100 days respectively by using the model and both of them are propagating westward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model's troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days espectively.The explanation of this interesting phenomena is still under investigation.
基金supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXLX11_0961)
文摘This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
基金The National Natural Science Foundation of China(No60475039)
文摘It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts: orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.
基金Supported by the National Natural Science Foundation of China (No.60404018) and the State Key Development Program for Basic Research of China (No.2002CB312200).
文摘A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated from the point of hybrid systems.The proposed scheme makes full use of the modeling power of mixed logical dy- namical(MLD)systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system,and takes advantage of the good control quality of model predictive control(MPC) to design a controller.Thus,this approach avoids oscillation during switching between sub-systems,helps to relieve shaking in transition,and augments the stability robustness of the whole system,and finally achieves optimal(i.e. fast and smooth)transition between operating points.The simulation results demonstrate that the presented ap- proach has a satisfactory performance.
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
基金supported by the National Natural Science Foundation of China(Nos.10972151,11272227)the Innovation Program for Scientific Research of Nanjing University of Science and Technology
文摘With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi′s fractional model.Firstly,based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group,the exact invariants are given.Secondly,on the basis of the definition of higher order adiabatic invariants of a dynamical system,the adiabatic invariants of the Noether symmetric perturbation for disturbed generalized El-Nabulsi′s fractional Birkhoff system are presented under some conditions,and some special cases are discussed.Finally,an example known as Hojman-Urrutia problem is given to illustrate the application of the results.
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金the National Natural Science Foundation of China(Grant No.12004049).
文摘We investigate a periodically driven Haldane model subjected to a two-stage driving scheme in the form of a step function.By using the Floquet theory,we obtain the topological phase diagram of the system.We also find that anomalous Floquet topological phases exist in the system.Focusing on examining the quench dynamics among topological phases,we analyze the site distribution of the 0-mode and p-mode edge states in long-period evolution after a quench.The results demonstrate that,under certain conditions,the site distribution of the 0-mode can be confined at the edge even in long-period evolution.Additionally,both the 0-mode and p-mode can recover and become confined at the edge in long-period evolution when the post-quench parameters(T,M_(2) /M_(1))in the phase diagram cross away from the phase boundary (M_(2)/ M_(1))=(6√3t2)/ M_(1)−1.Furthermore,we conclude that whether the edge state is confined at the edge in the long-period evolution after a quench depends on the similarity of the edge states before and after the quench.Our findings reveal some new characteristics of quench dynamics in a periodically driven system.
基金financial funding of National Natural Science Foundation of China (No.52004307)China National Petroleum Corporation (No.ZLZX2020-02-04)the Science Foundation of China University of Petroleum,Beijing (No.2462018YJRC015)。
文摘The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.
基金supported by the National Natural Science Foundation of China(Grant No.62373224)the Scientific Research Foundation of Nanjing Institute of Technology(Grant No.YKJ202212)+1 种基金the Nanjing Overseas Educated Personnel Science and Technology Innovation Projectthe Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(Grant No.XTCX202307)。
文摘Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithms in battery management systems is usually based on battery models,which interpret crucial battery dynamics through the utilization of mathematical functions.Therefore,the investigation of battery dynamics with the purpose of battery system identification has garnered considerable attention in the realm of battery research.Characterization methods in terms of linear and nonlinear response of lithium-ion batteries have emerged as a prominent area of study in this field.This review has undertaken an analysis and discussion of characterization methods,with a particular focus on the motivation of battery system identification.Specifically,this work encompasses the incorporation of frequency domain nonlinear characterization methods and dynamics-based battery electrical models.The aim of this study is to establish a connection between the characterization and identification of battery systems for researchers and engineers specialized in the field of batteries,with the intention of promoting the advancement of efficient battery technology for real-world applications.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.41825018,41977248,42207219)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61371033 and 51407054)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201442)the Fundamental Research Funds for the Central Universities of China(Grant No.2682016CX035)
文摘By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
基金supported by Supported by the Science and Technology Research Program of the Institute of Mountain Hazards and Environment,CAS(IMHE-ZDRW-01)the National Natural Science Foundation of China,China(Grant Numbers:42077275&42271086)the Special Project of Basic Research-Key Project,Yunnan(Grant Number:202301AS070039).
文摘The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers.