We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for m...We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.展开更多
We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The conver...We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.展开更多
The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on...The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.展开更多
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perf...This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.展开更多
Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predomin...Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.展开更多
In the article, an experiment is aimed at clarifying the transfer efficiency of the database in the cloud infrastructure. The system was added to the control unit, which has guided the database search in the local par...In the article, an experiment is aimed at clarifying the transfer efficiency of the database in the cloud infrastructure. The system was added to the control unit, which has guided the database search in the local part or in the cloud. It is shown that the time data acquisition remains unchanged as a result of modification. Suggestions have been made about the use of the theory of dynamic systems to hybrid cloud database. The present work is aimed at attracting the attention of specialists in the field of cloud database to the apparatus control theory. The experiment presented in this article allows the use of the description of the known methods for solving important practical problems.展开更多
This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy o...This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.展开更多
An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those f...An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those forces drive various kinetic processes, causing dissipation at spots, along curves, surfaces and interfaces, and within volumetric regions. The actual evolution path, and therefore the final equilibrium state, is determined by the energetics and kinetics. A virtual work principle Links the free energy landscape and the kinetic processes, and assigns a viscous environment to every point on the landscape. The approach leads to a dynamical system that governs the evolution of generalized coordinates. The microstructural evolution is globally characterized by a basin map in the coordinate space; and by a diversity map and a variety map in the parameter space. The control of basin boundaries raises the issue of energetic and kinetic bifurcations. The variation of basin boundaries under different sets of controlling parameters provides an analytical way to plot the diversity maps of structural evolution.展开更多
A control method is presented for the problem of decentralized stabilizationof large scale nonlinear systems by designing robust controllers, in the sense of L2-gaincontrol, for each subsystem. An uncertainty toleranc...A control method is presented for the problem of decentralized stabilizationof large scale nonlinear systems by designing robust controllers, in the sense of L2-gaincontrol, for each subsystem. An uncertainty tolerance matrix is defined to characterize thedesired robustness leve1 of the overall system. It is then identified that, for a given uncer-tainty tolerance matrix, the design problem is related to the existence of a smooth Positivedefinite solution to a modified Ham ilton -Jacobi - Bellman (H-J-B ) equa tion. The solution,if exists, is exactly the payoff function in terms of the game theory. A decentralized statefeedback law is duly designed, which, under the weak assumption of the zero-state ob-servability on the system, renders the overall closed-loop system aspoptotically stable withan explicitly expressed stability region. Finally, relation between the payoff function andthe uncertainty tolerance matrix is provided, highlighting the 'knowing less and payingmore' philosophy.展开更多
We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration do...We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration does as to the HUP previously derived. In doing so, we will be trying it in our discussion with the earlier work done on the HUP. not equal to zero, constant, but large would frequently imply which would have three dissimilar real valued roots. And the situation with not equal to zero yields more tractable result for which will have implications for the HUP inequality in Pre-Planckian space-time, and buttresses an analysis of a 1 dimensional “time” mapping for emergent VEV (vacuum expectation values).展开更多
We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order deriv...We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order derivative of the state of the driver. From the point of view of geometry, the first-order derivative of the state of the driver can be viewed as a tangent vector of the trajectory of the driver, so the proposed schemes are named tangent response schemes. Numerical simulations of the Lorenz system and the forced Duffing oscillator verify the validity of the tangent response schemes. We further point out that the tangent response can be interpreted as a special kind of generalised synchronisation, thereby explaining why the response system can exhibit rich geometrical structures in its state space.展开更多
This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient c...This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient condi- tions allowing such extension are obtained and,as an application of the theory a generalization of Routh's motion is presented.展开更多
A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the us...A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the user-defined optimal conditions, Through the analysis of linear and nonlinear examples, it is shown that the LDDSs constructed by using the Proper Orthogonal Decomposition (POD) method are not the optimum. After comparing the errors of LDDSs based on the new theory POD and Fourier methods, it is concluded that the LDDSs based on the new theory are optimally truncated and catch the desired physical properties of the systems.展开更多
Two methods of stability analysis of systems described by dynamical equations are being considered. They are based on an analysis of eigenvalues spectrum for the evolutionary matrix or the spectral equation and they a...Two methods of stability analysis of systems described by dynamical equations are being considered. They are based on an analysis of eigenvalues spectrum for the evolutionary matrix or the spectral equation and they allow determining the conditions of stability and instability, as well as the possibility of chaotic behavior of systems in case of a stability loss. The methods are illustrated for nonlinear Lorenz and Rossler model problems.展开更多
In this paper, lower bounds of the topological entropy for nonautonomous dynamical systems are given via the growths of topological complexity in fundamental group and in degree.
Based on the total time derivative along the trajectory of the time, we study the unified symmetry of Vacco dynamical systems. The definition and the criterion of the unified symmetry for the system are given. Three k...Based on the total time derivative along the trajectory of the time, we study the unified symmetry of Vacco dynamical systems. The definition and the criterion of the unified symmetry for the system are given. Three kinds of conserved quantities, i.e. the Noether conserved quantity, the generalized Hojman conserved quantity and the Mei conserved quantity, are deduced from the unified symmetry. An example is presented to illustrate the results.展开更多
In this paper, we consider a class of optimal control problem for the singularly perturbed hybrid dynamical systems. By means of variational method, we obtain the necessary conditions of the hybrid dynamical systems. ...In this paper, we consider a class of optimal control problem for the singularly perturbed hybrid dynamical systems. By means of variational method, we obtain the necessary conditions of the hybrid dynamical systems. Meanwhile, the existence of solution for the hybrid dynamical system is proved by the sewing method and the uniformly valid asymptotic expansion of the optimal trajectory is constructed by the boundary function method. Finally,an example is presented to illustrate the result.展开更多
Let(X,φ) be a nonautonomous dynamical system.In this paper,we introduce the notions of packing topological entropy and measure-theoretical upper entropy for nonautonomous dynamical systems.Moreover,we establish the v...Let(X,φ) be a nonautonomous dynamical system.In this paper,we introduce the notions of packing topological entropy and measure-theoretical upper entropy for nonautonomous dynamical systems.Moreover,we establish the variational principle between the packing topological entropy and the measure-theoretical upper entropy.展开更多
The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy h...The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs( Ф, A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism Ф, we prove a few results on that, define the entropy of a dynamical system hs(Ф), and show its invariance. The concept of sufficient families is also given and we establish that hs (Ф) comes out to be equal to the supremum of hs (Ф,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system ( L, s, Ф), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B, s0, Ф), where B is a Boolean algebra and so is a state on B.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province (Grant No.BK20220917)the National Natural Science Foundation of China (Grant Nos.12001213 and 12302035)。
文摘We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.
基金Supported by the National Natural Science Foun-dation of China (60133010) the Natural Science Foundation ofHubei Province (2004ABA011)
文摘We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.
基金the National NSFC under grant No.50579022the Foundation of Pre-973 Program of China under grant No.2004CCA02500+1 种基金the SRF for the ROCS,SEMthe Talent Recruitment Foundation of HUST
文摘The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.
基金The project supported by National Natural Science Foundation of China under Grant No.60674040National Natural Science Foundation for Distinguished Young Scholars under Grant No.60225015
文摘This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
文摘Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.
文摘In the article, an experiment is aimed at clarifying the transfer efficiency of the database in the cloud infrastructure. The system was added to the control unit, which has guided the database search in the local part or in the cloud. It is shown that the time data acquisition remains unchanged as a result of modification. Suggestions have been made about the use of the theory of dynamic systems to hybrid cloud database. The present work is aimed at attracting the attention of specialists in the field of cloud database to the apparatus control theory. The experiment presented in this article allows the use of the description of the known methods for solving important practical problems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61876073)the Fundamental Research Funds for the Central Universities of China(Grant No.JUSRP21920)
文摘This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results.
基金The project supported by the National Science Foundation(USA)through grant MSS-9258115by the National Natural Science Foundation of China
文摘An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those forces drive various kinetic processes, causing dissipation at spots, along curves, surfaces and interfaces, and within volumetric regions. The actual evolution path, and therefore the final equilibrium state, is determined by the energetics and kinetics. A virtual work principle Links the free energy landscape and the kinetic processes, and assigns a viscous environment to every point on the landscape. The approach leads to a dynamical system that governs the evolution of generalized coordinates. The microstructural evolution is globally characterized by a basin map in the coordinate space; and by a diversity map and a variety map in the parameter space. The control of basin boundaries raises the issue of energetic and kinetic bifurcations. The variation of basin boundaries under different sets of controlling parameters provides an analytical way to plot the diversity maps of structural evolution.
文摘A control method is presented for the problem of decentralized stabilizationof large scale nonlinear systems by designing robust controllers, in the sense of L2-gaincontrol, for each subsystem. An uncertainty tolerance matrix is defined to characterize thedesired robustness leve1 of the overall system. It is then identified that, for a given uncer-tainty tolerance matrix, the design problem is related to the existence of a smooth Positivedefinite solution to a modified Ham ilton -Jacobi - Bellman (H-J-B ) equa tion. The solution,if exists, is exactly the payoff function in terms of the game theory. A decentralized statefeedback law is duly designed, which, under the weak assumption of the zero-state ob-servability on the system, renders the overall closed-loop system aspoptotically stable withan explicitly expressed stability region. Finally, relation between the payoff function andthe uncertainty tolerance matrix is provided, highlighting the 'knowing less and payingmore' philosophy.
文摘We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration does as to the HUP previously derived. In doing so, we will be trying it in our discussion with the earlier work done on the HUP. not equal to zero, constant, but large would frequently imply which would have three dissimilar real valued roots. And the situation with not equal to zero yields more tractable result for which will have implications for the HUP inequality in Pre-Planckian space-time, and buttresses an analysis of a 1 dimensional “time” mapping for emergent VEV (vacuum expectation values).
文摘We construct new unidirectional coupling schemes for autonomous and nonautonomous drive systems, respectively. Each of these schemes makes the state of the response system asymptotically approach the first-order derivative of the state of the driver. From the point of view of geometry, the first-order derivative of the state of the driver can be viewed as a tangent vector of the trajectory of the driver, so the proposed schemes are named tangent response schemes. Numerical simulations of the Lorenz system and the forced Duffing oscillator verify the validity of the tangent response schemes. We further point out that the tangent response can be interpreted as a special kind of generalised synchronisation, thereby explaining why the response system can exhibit rich geometrical structures in its state space.
文摘This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient condi- tions allowing such extension are obtained and,as an application of the theory a generalization of Routh's motion is presented.
基金The project supported by the National Natural Science Foundation of ChinaLNM,Institute of Mechanics,CAS
文摘A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the user-defined optimal conditions, Through the analysis of linear and nonlinear examples, it is shown that the LDDSs constructed by using the Proper Orthogonal Decomposition (POD) method are not the optimum. After comparing the errors of LDDSs based on the new theory POD and Fourier methods, it is concluded that the LDDSs based on the new theory are optimally truncated and catch the desired physical properties of the systems.
文摘Two methods of stability analysis of systems described by dynamical equations are being considered. They are based on an analysis of eigenvalues spectrum for the evolutionary matrix or the spectral equation and they allow determining the conditions of stability and instability, as well as the possibility of chaotic behavior of systems in case of a stability loss. The methods are illustrated for nonlinear Lorenz and Rossler model problems.
基金Supported by the National Natural Science Foundation of China (10701032)Natural Science Foundation of Hebei Province (A2008000132)the Doctoral Foundation of Hebei Normal University (L2005B02)
文摘In this paper, lower bounds of the topological entropy for nonautonomous dynamical systems are given via the growths of topological complexity in fundamental group and in degree.
文摘Based on the total time derivative along the trajectory of the time, we study the unified symmetry of Vacco dynamical systems. The definition and the criterion of the unified symmetry for the system are given. Three kinds of conserved quantities, i.e. the Noether conserved quantity, the generalized Hojman conserved quantity and the Mei conserved quantity, are deduced from the unified symmetry. An example is presented to illustrate the results.
基金supported by the National Natural Science Foundation of China(11471118,11401385 and 11371140)Natural Science Foundation of Hebei Province(A2015407063)Doctoral Foundation of Hebei Normal University of Science and Technology(2013YB008)
文摘In this paper, we consider a class of optimal control problem for the singularly perturbed hybrid dynamical systems. By means of variational method, we obtain the necessary conditions of the hybrid dynamical systems. Meanwhile, the existence of solution for the hybrid dynamical system is proved by the sewing method and the uniformly valid asymptotic expansion of the optimal trajectory is constructed by the boundary function method. Finally,an example is presented to illustrate the result.
基金the National Natural Science Foundation of China (11871188, 12031019)。
文摘Let(X,φ) be a nonautonomous dynamical system.In this paper,we introduce the notions of packing topological entropy and measure-theoretical upper entropy for nonautonomous dynamical systems.Moreover,we establish the variational principle between the packing topological entropy and the measure-theoretical upper entropy.
文摘The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs( Ф, A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism Ф, we prove a few results on that, define the entropy of a dynamical system hs(Ф), and show its invariance. The concept of sufficient families is also given and we establish that hs (Ф) comes out to be equal to the supremum of hs (Ф,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system ( L, s, Ф), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B, s0, Ф), where B is a Boolean algebra and so is a state on B.