In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loa...In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.展开更多
The addition of the additives to the lubricant oil to enhance the characteristics of the lubricant will influence the performance of the bearings. Based on the theory of micropolar fluids, the tribological characteris...The addition of the additives to the lubricant oil to enhance the characteristics of the lubricant will influence the performance of the bearings. Based on the theory of micropolar fluids, the tribological characteristics of a dynamically-loaded journal bearing are numerically studied. Comparisons are made between the Newtonian fluids and the micropolar fluids. It is shown that for a dynamically-loaded journal bearing, the micropolar fluids yield an increase not only in the friction force, but also in the friction coefficient. In addition, the oil film pressure and the oil film thickness are obviously higher than that of Newtonian fluids.展开更多
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h...Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.展开更多
The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive...The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive and active components will be developed in this paper in order to control the shaft dynamical amplitude. Different models of hydrodynamic bearings behavior are described. The Reynolds equation resolution may be done by numerical or analytical solutions. A physical analysis of the equation of thin films will identify the most sensitive parameters. The shaft flexibility is taking into account by a modal approach. The fluid-structure coupling process is a simulation, step by step, of the rotor behavior. At each step, the nonlinear fluid force is numerically calculated to obtain the unbalanced shaft response. The results, presented in this paper, concern the dynamic response of unbalanced shaft mounted in adaptive or active bearings: bearings with variable clearance, variable viscosity or variable housing speed. It is shown that the fluid bearing parameters must be adapted to the rotor speed (in particular near or far a critical speed). Then, the paper presents a new kind of active bearing. It works with a mechanical control of the housing position. Several parameters are tested and compared. The robustness of the dynamic control parameters is presented. In conclusion, the bearing adaptation could be very useful to control the shaft dynamic. This limits the effect of the critical speed, in particular by diminishing the shaft amplitude and the dynamic forces transmitted to the housing.展开更多
To reveal nonlinear dynamic rules of low viscosity fluid-lubricated tilting-pad journal bearings(TPJBs),the effects of design parameters on journal center orbits and dynamic minimum film thicknesses of water-lubricate...To reveal nonlinear dynamic rules of low viscosity fluid-lubricated tilting-pad journal bearings(TPJBs),the effects of design parameters on journal center orbits and dynamic minimum film thicknesses of water-lubricated TPJBs with and without static loads are investigated.The hydrodynamic bearing force used in the nonlinear dynamic analysis is an approximate analytical solution including the turbulence effect.The results reveal the methods for vibration suppression and load capacity improvement and give an optimal pivot offset and clearance ratio that can maximize the minimum film thickness.The results also show that four-pad TPJBs with loads between pads are preferred due to good dynamic performance and load capacity.This study would provide some guidance for nonlinear design of low viscosity fluid-lubricated TPJBs under dynamic loads.展开更多
文摘In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.
基金This work was supported by the Science Foundation of Beijing Institute of Technologythe University Foundation of Doctor Education of China(Grant No.2000000310).
文摘The addition of the additives to the lubricant oil to enhance the characteristics of the lubricant will influence the performance of the bearings. Based on the theory of micropolar fluids, the tribological characteristics of a dynamically-loaded journal bearing are numerically studied. Comparisons are made between the Newtonian fluids and the micropolar fluids. It is shown that for a dynamically-loaded journal bearing, the micropolar fluids yield an increase not only in the friction force, but also in the friction coefficient. In addition, the oil film pressure and the oil film thickness are obviously higher than that of Newtonian fluids.
文摘Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.
文摘The dynamic behavior of rotors is highly influenced by bearing characteristics. In previous works, the authors have shown that it may be beneficial to adapt the bearing behavior to the shaft behavior. Several adaptive and active components will be developed in this paper in order to control the shaft dynamical amplitude. Different models of hydrodynamic bearings behavior are described. The Reynolds equation resolution may be done by numerical or analytical solutions. A physical analysis of the equation of thin films will identify the most sensitive parameters. The shaft flexibility is taking into account by a modal approach. The fluid-structure coupling process is a simulation, step by step, of the rotor behavior. At each step, the nonlinear fluid force is numerically calculated to obtain the unbalanced shaft response. The results, presented in this paper, concern the dynamic response of unbalanced shaft mounted in adaptive or active bearings: bearings with variable clearance, variable viscosity or variable housing speed. It is shown that the fluid bearing parameters must be adapted to the rotor speed (in particular near or far a critical speed). Then, the paper presents a new kind of active bearing. It works with a mechanical control of the housing position. Several parameters are tested and compared. The robustness of the dynamic control parameters is presented. In conclusion, the bearing adaptation could be very useful to control the shaft dynamic. This limits the effect of the critical speed, in particular by diminishing the shaft amplitude and the dynamic forces transmitted to the housing.
基金This work is supported by National Basic Research Program of China(Grant No.2015CB057303)National Natural Science Foundation of China(Grant No.51775412).
文摘To reveal nonlinear dynamic rules of low viscosity fluid-lubricated tilting-pad journal bearings(TPJBs),the effects of design parameters on journal center orbits and dynamic minimum film thicknesses of water-lubricated TPJBs with and without static loads are investigated.The hydrodynamic bearing force used in the nonlinear dynamic analysis is an approximate analytical solution including the turbulence effect.The results reveal the methods for vibration suppression and load capacity improvement and give an optimal pivot offset and clearance ratio that can maximize the minimum film thickness.The results also show that four-pad TPJBs with loads between pads are preferred due to good dynamic performance and load capacity.This study would provide some guidance for nonlinear design of low viscosity fluid-lubricated TPJBs under dynamic loads.