This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-...This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.展开更多
Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challe...Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type Ⅱ bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames(with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field"(22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.展开更多
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system mo...The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.展开更多
We examine the cross-shelf variation of internal tides(ITs)west of the Dongsha Plateau in the northern South China Sea based on observations from 4 moorings deployed between August 2017 and September 2018.On the slope...We examine the cross-shelf variation of internal tides(ITs)west of the Dongsha Plateau in the northern South China Sea based on observations from 4 moorings deployed between August 2017 and September 2018.On the slope,the amplitude of diurnal baroclinic current ellipses are 5 times larger than that of barotropic currents.The baroclinic energy quickly dissipates during cross-shelf propagation,and barotropic currents become dominant on the shelf outside of the Zhujiang River Estuary,with the amplitude of semidiurnal barotropic current ellipses being 10 times larger than that of the baroclinic ones.Dynamic modal decomposition indicates the first baroclinic mode is dominant for both diurnal and semidiurnal ITs.The total horizontal kinetic energy(HKE)of the first three baroclinic modes shows spatiotemporal differences among the 4 moorings.On the slope,the HKE for diurnal ITs is stronger in summer and winter,but weaker in spring and autumn;for semidiurnal ITs there is a similar seasonal variation,but the HKE in winter is even stronger than that in summer.On the shallow shelf,both diurnal and semidiurnal ITs maintain a certain intensity in summer but almost disappear in winter.Further analysis shows that only the upper water column is affected by seasonal variation of stratification on the slope,variation of diurnal ITs is thus controlled by the semi-annual cycle of barotropic energy input from the Luzon Strait,while the incoherent baroclinic currents make a major contribution to the temporal variation of semidiurnal ITs.For the shelf region,the water column is well mixed in winter,and the baroclinic energy largely dissipates when ITs propagate to the shelf zone despite of a strong barotropic energy input from the Luzon Strait.展开更多
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test...When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.展开更多
A motorized spindle supported by active magnetic bearings(AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal ...A motorized spindle supported by active magnetic bearings(AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.展开更多
This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure informat...This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.展开更多
文摘This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.
基金Public research funding from“Fondi di Ricerca d’Ateneo ex 60%” and a ministerial doctoral grantfunds at the ISA Doctoral School,University of Bergamo,Department of Engineering and Applied Sciences (Dalmine)
文摘Output-only structural identification is developed by a refined Frequency Domain Decomposition(rFDD) approach, towards assessing current modal properties of heavy-damped buildings(in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type Ⅱ bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames(with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field"(22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.
基金Supported by the China Scholarship Council,National Natural Science Foundation of China(Grant No.11402022)the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office(DYSCO)+1 种基金the Fund for Scientific Research–Flanders(FWO)the Research Fund KU Leuven
文摘The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
基金The Key-Area Research and Development Project of Guangdong Province under contract No.2020B1111020003the Science and Technology Plan Projects of Guangdong Province under contract No.2021B1212050025the Science and Technology Development Fund of the South China Sea Bureau,Ministry of Natural Resources under contract No.202205.
文摘We examine the cross-shelf variation of internal tides(ITs)west of the Dongsha Plateau in the northern South China Sea based on observations from 4 moorings deployed between August 2017 and September 2018.On the slope,the amplitude of diurnal baroclinic current ellipses are 5 times larger than that of barotropic currents.The baroclinic energy quickly dissipates during cross-shelf propagation,and barotropic currents become dominant on the shelf outside of the Zhujiang River Estuary,with the amplitude of semidiurnal barotropic current ellipses being 10 times larger than that of the baroclinic ones.Dynamic modal decomposition indicates the first baroclinic mode is dominant for both diurnal and semidiurnal ITs.The total horizontal kinetic energy(HKE)of the first three baroclinic modes shows spatiotemporal differences among the 4 moorings.On the slope,the HKE for diurnal ITs is stronger in summer and winter,but weaker in spring and autumn;for semidiurnal ITs there is a similar seasonal variation,but the HKE in winter is even stronger than that in summer.On the shallow shelf,both diurnal and semidiurnal ITs maintain a certain intensity in summer but almost disappear in winter.Further analysis shows that only the upper water column is affected by seasonal variation of stratification on the slope,variation of diurnal ITs is thus controlled by the semi-annual cycle of barotropic energy input from the Luzon Strait,while the incoherent baroclinic currents make a major contribution to the temporal variation of semidiurnal ITs.For the shelf region,the water column is well mixed in winter,and the baroclinic energy largely dissipates when ITs propagate to the shelf zone despite of a strong barotropic energy input from the Luzon Strait.
基金Supported by National Natural Science Foundation of China(Grant No.U1134201)
文摘When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.
基金co-supported by the National Natural Science Foundation of China (No. 51275238)a Project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) of China
文摘A motorized spindle supported by active magnetic bearings(AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.
基金supported by National Natural Science Foundation of China(No.61201425)the Natural Science Foundation of Jiangsu Province(No.BK20131280)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.