期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Effects of Soil Water Content on Cotton Root Growth and Distribution Under Mulched Drip Irrigation 被引量:25
1
作者 HU Xiao-tang, CHEN Hu, WANG Jing, MENG Xiao-bin and CHEN Fu-hong Agricultural College, Shihezi University, Shihezi 832003, P.R.China 《Agricultural Sciences in China》 CSCD 2009年第6期709-716,共8页
The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil ... The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation. 展开更多
关键词 mulched drip irrigation cotton (Gossypium hirsutum L.) soil water content root
下载PDF
Modelling soil water dynamics and root water uptake for apple trees under water storage pit irrigation 被引量:2
2
作者 Xianghong Guo Tao Lei +4 位作者 Xihuan Sun Juanjuan Ma Lijian Zheng Shaowen Zhang Qiqi He 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第5期126-134,共9页
Water storage pit irrigation is a new method suitable for apple trees.It comes with advantages such as water saving,water retention and drought resistance.A precise study of soil water movement and root water uptake i... Water storage pit irrigation is a new method suitable for apple trees.It comes with advantages such as water saving,water retention and drought resistance.A precise study of soil water movement and root water uptake is essential to analyse and show the advantages of the method.In this study,a mathematical model(WSPI-WR model)for 3D soil water movement and root water uptake under water storage pit irrigation was established based on soil water dynamics and soil moisture and root distributions.Moreover,this model also considers the soil evaporation,pit wall evaporation and water level variation in the pit.The finite element method was used to solve the model,and the law of mass conservation was used to analyse the water level variation.The model was validated by experimental data of the sap flow of apple trees and soil moisture in the orchard.Results showed that the WSPI-WR model is highly accurate in simulating the root water uptake and soil water distributions.The WSPI-WR model can be used to simulate root water uptake and soil water movement under water storage pit irrigation.The simulation showed that orchard soil water content and root water uptake rate centers on the storage pit with an ellipsoid distribution.The maximum distribution region of soil water and root water uptake rate was near the bottom of the pit.Distribution can reduce soil evaporation in the orchard and improve the soil water use efficiency in the middle-deep soil. 展开更多
关键词 root water uptake soil water dynamics numerical simulation water storage pit irrigation apple tree
原文传递
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
3
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
4
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
A Dynamic Model for Simulating Atmospheric, Surface and Soil Water interactions in Hillslope of Loess Area Under Natural Conditions and Its Application 被引量:2
5
作者 ZHANG SHUHAN KANG SHAOZHONG +1 位作者 CAI HUANJIE and NIE GUANGYONG Institute of Agricultural Soil-Water Engineering, Northwestern Agricultural University, Yangling 712100 (China) Inner Mongolia institute of Water Conservancy, Huhhot 010020 (China) 《Pedosphere》 SCIE CAS CSCD 2001年第3期271-282,共12页
The mechanism of atmospheric, surface and soil water interactions (water transformation) in hillslope under natural conditions was analyzed, and a dynamic model was developed to simulate infiltration, overland flow an... The mechanism of atmospheric, surface and soil water interactions (water transformation) in hillslope under natural conditions was analyzed, and a dynamic model was developed to simulate infiltration, overland flow and soil water movement during natural rainfall in hillslope, by bringing forward concepts such. as rainfall intensity on slope and a correction coefficient of saturated soil water content for soil surface seal. Some factors, including slope angle, slope orientation and raindrop inclination, which affect the rainfall amount on slope, were taken into account while developing the dynamic model. The effect of surface seal on infiltration and water balance under a boundary condition of the second kind was also considered. Application of the model in a field experiment showed that the model simulated precisely the infiltration, overland flow and soil water movement in hillslope under natural rainfall conditions. 展开更多
关键词 dynamic model HILLSLOPE INFILTRATION soil water content water transformation
下载PDF
Root zone soil moisture redistribution in maize (<i>Zea mays</i>L.) under different water application regimes 被引量:1
6
作者 John Mthandi Fedrick C. Kahimba +2 位作者 Andrew K. P. R. Tarimo Baanda A. Salim Maxon W. Lowole 《Agricultural Sciences》 2013年第10期521-528,共8页
Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moist... Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moisture within crop’s root zone and its linkage to the amount of water applied is very important as it assists in optimising the efficient use of water and reducing yield losses. The study aimed at evaluating the spatial redistribution of soil moisture within maize roots zone under different irrigation water application regimes. The study was conducted during two irrigatation seasons of 2012 at Nkango Irrigation Scheme, Malawi. The trials consisted of factorial arrangement in a Randomised Complete Block Design (RCBD). The factors were water and nitrogen and both were at four levels. The Triscan Sensor was used to measure volumetric soil moisture contents at different vertical and lateral points. The study inferred that the degree of soil moisture loss depends on the amount of water present in the soil. The rate of soil moisture loss in 100% of full water requirement regime (100% FWRR) treatment was higher than that in 40% FWRR treatment. This was particularly noticed when maize leaves were dry. In 100% FWRR treatment, the attraction between water and the surfaces of soil particles was not tight and as such “free” water was lost through evaporation and deep percolation, while in 40% FWRR, water was strongly attracted to and held on the soil particles surfaces and as such its potential of losing water was reduced. 展开更多
关键词 soil Moisture content Full Crop water Requirement Regime MAIZE root Zone
下载PDF
Effect of Deep Loosening on Soil Structure and Maize Root Activity 被引量:2
7
作者 闫伟平 边少锋 +6 位作者 谭国波 赵洪祥 李海 张丽华 方向前 孟祥盟 孙宁 《Agricultural Science & Technology》 CAS 2016年第11期2539-2542,2545,共5页
[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water res... [Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water resources. [Method] Three differ- ent loosening treatments for maize in ridges were performed in field trials as fol- lows: conventional ridge tillage, loosening the cm in spring (deep loosening in spring), and depth of 30 cm in autumn (deep loosening in soils between rows to a depth of 30 oosening the soils between rows to a autumn). Then the soil properties and the development of root system were measured to evaluate the effects of different loosening methods. [Result] Soil compactness was significantly reduced after deep loosening in spring, There were significant differences in soil compactness in 0-20 cm depth and soil bulk density in 0-40 cm depth between deep loosening in spring and deep loosening in autumn, deep loosening in spring and conventional ridge tillage. The soil water holding capacity was also significantly different between the two deep loosening treatments and conventional ridge tillage. Moreover, the root ac- tive absorption area of maize of deep loosening in spring was higher than that of conventionai ridge tillage. [Conclusion] Deep loosening can reduce soil compactness, bulk density, and improve soil water holding capacity, soil water content and the root activity of maize. Deep loosening in spring is better in soil improvement be- cause spring is closer to the growth period of crops than autumn. So, deep loosen- ing is conducive to the improvement of soil compactness and structure. 展开更多
关键词 Deep loosening soil compactness soil water content root active ab- sorotion area
下载PDF
Contribution of root respiration to total soil respiration during non-growing season in mine reclaimed soil with different covering-soil thicknesses 被引量:1
8
作者 Min Chen Xiaoyang Chen +3 位作者 Zhiyong Hu Tingyu Fan Shiwen Zhang Ying Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1130-1137,共8页
An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystems.This study investigated dynamic changes in root respiration and the contribution of root... An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystems.This study investigated dynamic changes in root respiration and the contribution of root respiration to total soil respiration(R_(r)/R_(t) ratio)during the non-growing season in mine reclaimed soil,with different covering-soil thicknesses.According to the covering-soil thicknesses,the study area was divided into four sites:10-25 cm(site A),25-45 cm(site B),45-55 cm(site C),and 55-65 cm(site D).From November 2017 to April 2018(except February in 2018),the soil respiration,root respiration,temperature at 5 cm,water content,and root biomass were measured.The results show that soil temperature and root respiration exhibited similar diurnal and monthly variations.The root respiration is strongly influenced by soil temperature during the non-growing season,with an exponential and positive relationship(P<0.001).Root respiration varies with the covering-soil thickness and is greatest with a covering-soil thickness of 25-45 cm.The R_(r)/R_(t) ratio also exhibits monthly variations.During the non-growing season,the mean value of the R_(r)/R_(t) ratio is 51.15%in mine reclaimed soil.The study indicates that root respiration is the primary source of soil respiration and is an important factor for estimating the potential emission of soil CO_(2) from mine reclaimed soil at the regional scale. 展开更多
关键词 root respiration soil respiration soil temperature soil water content root biomass
下载PDF
Effects of Two-Year Variation in Soil Moisture Condition on the Development of Larch Root System in Eastern Siberia
9
作者 Chisato Takenaka Mie Miyahara +1 位作者 Takeshi Ohta Trofim C. Maximov 《American Journal of Climate Change》 2016年第2期157-166,共10页
Recent climate changes, including an increase in precipitation, have affected tree physiology in eastern Siberia. We investigated the response of larch to wet and dry soil water conditions in pot experiments using lar... Recent climate changes, including an increase in precipitation, have affected tree physiology in eastern Siberia. We investigated the response of larch to wet and dry soil water conditions in pot experiments using larch seedlings grown under near-natural conditions in eastern Siberia over two growing seasons. Three patterns of wet- and dry-treatment combinations were applied over 2 years: wet treatments in 2006 and 2007 (WW treatment), dry in 2006 and wet in 2007 (DW treatment), and dry in 2006 and 2007 (DD treatment). After 1 year of treatment, no significant difference between the dry and wet treatment was found in root distribution and needle water content, except for the content of abscisic acid in roots. After 2 years of treatment, the DW treatment induced different tendencies in the gas exchange activity and in the needle biomass and root distribution of seedlings in comparison with WW treatments, despite the same water condition in 2007. We suggest a possibility that seedlings that experience drought stress might store some memory of drought that influences their physiology in the next growing season. 展开更多
关键词 LARCH soil water content root Distribution Memory Effect
下载PDF
Seasonal changes of soil respiration in Betula platyphylla forest in Changbai Mountain, China 被引量:2
10
作者 刘颖 韩士杰 林鹿 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期367-371,I0007,共6页
A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004.... A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004. Results indicated that the total soil respiration, root-severed soil respiration and the root respiration followed a similar seasonal trend, with a high rate in summer due to wet and high temperature and a low rate in spring and autumn due to lower temperature. The mean rates of total soil respiration, root-severed soil respiration and root respiration were 4.44, 2.30 and 2.14 μmol.m^-2.s^-1, respectively during the growing season, and they were all exponentially correlated with temperature. Soil respiration rate had a linear correlation with soil volumetric moisture. The Q10 values for total soil respiration, root-severed soil respiration and root respiration were 2,82, 2.59 and 3. 16, respectively. The contribution rate of root respiration to the total soil respiration was between 29.3% and 58.7% during the growing season, indicating that root is a major component of soil respiration. The annual mean rates of total soil respiration, root-severed soil respiration and root respiration were 1.96, 1.08, and 0.87 μmol.m^-2.s^-1, or 741.73 408.71, and 329.24 g.m^-2.a^-1, respectively. Root respiration contributed 44.4% to the annual total soil respiration. The relationship proposed for soil respiration with soil lemperature was useful for understanding and predicting potential changes in Changbai Mountain B. platyphylla forest ecosystem in response to forest management and climate change. 展开更多
关键词 root respiration seasonal variations soil respiration soil temperature soil water content
下载PDF
Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean 被引量:5
11
作者 Hyen Chung CHUN Sanghun LEE +2 位作者 Young Dae CHOI Dong Hyeok GONG Ki Youl JUNG 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第10期2639-2651,共13页
Due to global climate change,Korea is facing severe droughts that affect the planting and early vegetative periods of upland crops.Soybean and adzuki bean are important legume crops in Korea,so it is critical to under... Due to global climate change,Korea is facing severe droughts that affect the planting and early vegetative periods of upland crops.Soybean and adzuki bean are important legume crops in Korea,so it is critical to understand their adaptations to water stress.This study investigated the changes in root morphological properties in soybean and adzuki bean and quantified the findings using fractal analysis.The experiment was performed at the National Institute of Crop Science in Miryang,Korea.Soybeans and adzuki beans were planted in test boxes and grown for 30 days.The boxes were filled with bed soil with various soil moisture treatments.Root images were obtained and scanned every two days,and the root properties were characterized by root length,depth and surface area,number of roots,and fractal parameters(fractal dimension and lacunarity).Root depth,length and surface area and the number of roots increased in both crops as the soil moisture content increased.The fractal dimension and lacunarity values increased as the soil moisture content increased.These results indicated that the greater the soil moisture,the more heterogeneous the root structure.Correlation analysis of the morphological properties and fractal parameters indicated that soybean and adzuki bean had different root structure developments.Both soybean and adzuki bean were sensitive to the amount of soil moisture in the early vegetative stage.Soybean required a soil moisture content greater than 70%of the field capacity to develop a full root structure,while adzuki bean required 100%of the field capacity.These results would be useful in understanding the responses of soybean and adzuki bean to water stress and managing irrigation during cultivation. 展开更多
关键词 SOYBEAN adzuki bean root MORPHOLOGY fractal dimension soil water content
下载PDF
Root distribution of three co-occurring desert shrubs and their physiological response to precipitation 被引量:4
12
作者 GuiQing Xu Yan Li 《Research in Cold and Arid Regions》 2009年第2期120-127,共8页
Root distribution of three desert shrubs,Tamarix ramosissima Ledeb.,Haloxylon ammodendron(C.A.Mey.) Bunge and Reaumuria soongorica(Pall.) Maxim.was investigated under co-occurring conditions using a method for excavat... Root distribution of three desert shrubs,Tamarix ramosissima Ledeb.,Haloxylon ammodendron(C.A.Mey.) Bunge and Reaumuria soongorica(Pall.) Maxim.was investigated under co-occurring conditions using a method for excavating the whole root system.Assimilation shoot water potential and transpiration rates were monitored during the wet-dry cycle.Leaf-specific apparent hydraulic conductance and the index of water stress impact for the three species were calculated from shoot water potential and transpiration rate.The results showed that,along the soil profile,the root system of T.ramosissima mainly distributed at 50 to 310 cm interval,with an average total absorbing root-surface area of 30,249.2 cm2 per plant;the root system of H.ammodendraom distributed at 0 to 250 cm interval with an average total absorbing root-surface area of 12,847.3 cm2 per plant;the root system of R.soongorica distributed at 0-80 cm interval,with an average total absorbing root-surface area of 361.8 cm2.The root distribution shows the following:T.ramosissima uses groundwater as its main water source;H.ammodendraom uses both groundwater and rainwater;and R.soongorica uses rainwater only.During the wet-dry cycle,the hydraulic parameters of T.ramosissima showed no responses to precipitation.R.soongorica responded most significantly,and the responses of H.ammodendraom were intermediate.In conclusion,the plant response to rain events is closely related to their root distribution and plant water-use strategy. 展开更多
关键词 soil water content root distribution assimilation shoot water potential transpiration rate leaf-specific apparent hydraulic conductance
下载PDF
Determination of drought tolerance using root activities in Robinia pseudoacada 'Idaho' transformed with mtl-D gene 被引量:2
13
作者 Wang Hua-fang Zhu Yi-hong Sun Hai-jun 《Forestry Studies in China》 CAS 2006年第4期75-81,共7页
Idaho locust (Robinia pseudoacacia ‘Idaho') is an exotic multi-purpose tree used in landscaping, soil and water conserva- tion, fodder sources and others. To improve its drought tolerance for reclaiming arid land,... Idaho locust (Robinia pseudoacacia ‘Idaho') is an exotic multi-purpose tree used in landscaping, soil and water conserva- tion, fodder sources and others. To improve its drought tolerance for reclaiming arid land, five lines of transformed mtl-D gene, as osmotic regulator in plant cells, have been selected and managed to determine their drought tolerance under experimental conditions. Qualitative and quantitative variables of transformed plants were studied. The critical value of drought tolerance was determined by detecting the 2,3,5-triphenyl tetrazolium chloride (TTC) reductants in roots and soil water content (SWC). The critical value for drought tolerance was SWC 6% while for the control plants the critical SWC was 8%; a moderate level of SWC is 13% and the highest SWC for plant endurance was 18%. The method proved to be reliable and sensitive in the evaluation of drought tolerance for forest trees. 展开更多
关键词 Robinia pseudoacacia ‘Idaho' root activity critical value of drought tolerance soil water content 2 3 5-triphenyltetrazolium chloride (TTC)
下载PDF
植被根系含量对膨胀土持水和渗透特性的影响
14
作者 许英姿 汤鸿 +3 位作者 廖丽萍 黄政棋 郭彦彦 黄全恩 《科学技术与工程》 北大核心 2024年第17期7298-7304,共7页
为探究植被根系含量对膨胀土持水和渗透特性的影响规律,选取南宁市膨胀土地区的膨胀土,掺入狗牙根根系制备不同含根率的试样,进行室内压力板仪试验和变水头渗透试验,采用Van Genuchten-Mualem模型预测不同含根率的膨胀土非饱和渗透系数... 为探究植被根系含量对膨胀土持水和渗透特性的影响规律,选取南宁市膨胀土地区的膨胀土,掺入狗牙根根系制备不同含根率的试样,进行室内压力板仪试验和变水头渗透试验,采用Van Genuchten-Mualem模型预测不同含根率的膨胀土非饱和渗透系数。结果表明:掺入根系后,膨胀土持水能力减弱,根系掺入增加膨胀土内部大孔隙的比例,含根率越高,大孔隙体积占总孔隙体积比例越大,持水能力相较于纯土下降的幅度越大;饱和状态下,膨胀土渗透系数随含根率增大而增大;非饱和状态下,低吸力阶段(0~25 kPa)的膨胀土渗透性随含根率的增大而增大,随着基质吸力增加到高吸力阶段(200~1 000 kPa),根系优势流效果减弱,含根膨胀土渗透性逐渐趋近低于纯土;细观结果表明根系的掺入使膨胀土内部产生贯通裂缝,是影响膨胀土持水和渗透能力的关键因素。研究进一步揭示了植被根系对膨胀土增渗作用的机理和规律,为综合评价植被防护膨胀土边坡效果提供参考。 展开更多
关键词 含根率 膨胀土 土-水特征曲线 渗透系数 模型预测
下载PDF
植物根系吸水模型研究进展
15
作者 杨乐 龙兰 +3 位作者 艾施荣 施俊林 王龙飞 李紫怡 《科学技术与工程》 北大核心 2024年第4期1326-1337,共12页
根系是植物获取水分的主要器官,它直接影响整个植株的输水量以及生命活动。在水资源短缺的状况下,了解根系生长过程中的需水特性并提高农业中水资源的利用率,一直是节水灌溉技术中研究创新的热点。因此,在研究过程中需要对植物根系的吸... 根系是植物获取水分的主要器官,它直接影响整个植株的输水量以及生命活动。在水资源短缺的状况下,了解根系生长过程中的需水特性并提高农业中水资源的利用率,一直是节水灌溉技术中研究创新的热点。因此,在研究过程中需要对植物根系的吸水量进行精确估算,建立根系吸水模型是定量化研究植物根系吸水特性的重要方法。概述根系吸水的原理及其主要影响因素,对不同研究方法下的根系吸水模型进行分类研究,并阐述其适用范围及优缺点,同时介绍了水盐共同胁迫下的根系吸水模型。最后对目前的根系吸水模型进行分析,提出了今后的研究方向。研究成果为构建水稻根系三维动态吸水模型提供了基础。 展开更多
关键词 植物根系 吸水模型 宏观模型 微观模型 土壤植物大气连续体(SPAC)体系
下载PDF
Effective root depth and water uptake ability of winter wheat by using water stable isotopes in the Loess Plateau of China 被引量:2
16
作者 Wang Bing Zheng Lijian +3 位作者 Ma Juanjuan Sun Xihuan Guo Xianghong Guo Fei 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第6期27-35,共9页
A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.Th... A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.The water stable isotopes technique was used to estimate the water uptake contributions of different root depths during the growth stages.On the basis of IsoSource and the Romero-Saltos model,the ERD was 0-40 cm in the majority of the growth stage.However,in the heading and filling stages,the ERD could reach 60%-75%of the maximum root depth.Furthermore,the contributions to water uptake of different root depths were correlated with variations in soil water and root length density(r=0.395 and 0.368,respectively;p<0.05).However,by path analysis,the low decisive coefficient indicated that root distribution and soil water content did not always follow the same trend as water uptake.The conclusions of this study can help with understanding winter wheat water uptake mechanisms in arid and semi-arid regions and increasing water use efficiency. 展开更多
关键词 effective root depth water stable isotopes water uptake root distribution soil water content
原文传递
晋西黄土区典型造林整地措施对土壤水分动态的影响
17
作者 朱洪盛 赵炯昌 +4 位作者 池金洺 王子涵 王丽平 王正泽 于洋 《浙江农林大学学报》 CAS CSCD 北大核心 2024年第5期996-1004,共9页
【目的】探究晋西黄土区典型造林树种和水平阶整地措施对0~180 cm土层土壤水分动态的影响,为植被恢复及流域综合治理提供参考依据。【方法】以晋西黄土残塬区蔡家川流域典型工程措施水平阶以及主要造林树种刺槐Robinia pseudoacacia和侧... 【目的】探究晋西黄土区典型造林树种和水平阶整地措施对0~180 cm土层土壤水分动态的影响,为植被恢复及流域综合治理提供参考依据。【方法】以晋西黄土残塬区蔡家川流域典型工程措施水平阶以及主要造林树种刺槐Robinia pseudoacacia和侧柏Platycladusorientalis为研究对象,于2019年5—9月生长季开展土壤水分定位监测,并采用配对试验,对自然坡面刺槐林地与侧柏林地土壤水分进行同步观测,分析不同植被和水平阶整地综合影响下的土壤水分特征及对降雨事件的响应,评价典型工程措施对不同植被土壤含水量的影响。【结果】生长季不同植被类型、水平阶整地前后的土壤含水量的变化与降雨量的变化密切相关,不同样地平均土壤含水量由高到低依次为水平阶侧柏林地(18.68%)、自然坡面侧柏林地(16.19%)、水平阶刺槐林地(16.10%)、自然坡面刺槐林地(15.42%)。较之自然坡面,水平阶整地措施能够分别提高侧柏林地和刺槐林地土壤含水量15.38%、4.41%。根据土壤水分垂直变化特征,水平阶整地可以提升土壤水分的活跃层、次活跃层深度:水平阶侧柏林地活跃层、次活跃层深度范围为0~80 cm,相对于自然坡面侧柏林地提升深度33%;水平阶刺槐林地活跃层、次活跃层深度范围为0~140 cm,相对于自然坡面刺槐林地提升深度40%。【结论】土壤含水量的动态变化与降雨量、工程措施、植被作用关系密切,水平阶是开展黄土残塬小流域生态恢复的有效工程措施,且水平阶侧柏林地提升效果要优于水平阶刺槐林地。图3表3参37. 展开更多
关键词 水平阶整地 植被类型 土壤含水量 动态变化 晋西黄土区
下载PDF
初始含水率对三江并流区消落带含根土壤崩解性的影响 被引量:1
18
作者 保锐琴 段青松 +5 位作者 李建兴 黄广杰 张立芸 熊寿德 陈正发 王建文 《云南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期175-183,共9页
【目的】研究初始含水率对三江并流区消落带含根土壤崩解性的影响,为该区域消落带土壤侵蚀防控和植被恢复提供依据。【方法】通过野外崩解试验测定不同初始含水率下狗牙根(Cynodon dactylon)、美人蕉(Canna indica)、风车草(Cyperus alt... 【目的】研究初始含水率对三江并流区消落带含根土壤崩解性的影响,为该区域消落带土壤侵蚀防控和植被恢复提供依据。【方法】通过野外崩解试验测定不同初始含水率下狗牙根(Cynodon dactylon)、美人蕉(Canna indica)、风车草(Cyperus alternifolius)、花叶芦竹(Arundo donax var.versicolor)和菖蒲(Acorus calamus)5种消落带适生植物原状含根土壤的崩解指标,用根系分析仪分析其根系特征,并分析崩解指标与根系特征的相关性。【结果】初始含水率为7.2%、11.4%、15.2%和36.7%(饱和)时,有根处理的平均崩解量分别为素土的77.0%、92.4%、112.1%和362.8%,崩解速率分别为素土的71.4%、106.6%、127.5%和400.0%。在非饱和状态,直径≤1 mm的根系具有明显的抗崩解作用,而直径>2 mm的根系具有促进崩解的作用;在饱和状态,直径≤1 mm的根系特征与崩解量和崩解速率的关系均不明显,直径>1 mm的根系具有促进崩解的作用。5种植物根系中,以狗牙根的抗崩解性最强,美人蕉最弱。【结论】初始含水率较低时,草本植物根系能抑制土壤崩解;初始含水率较大时,根系会促进土壤崩解。直径>2 mm的根系具有促进崩解的作用,在三江并流区消落带植被恢复中,在适生性的前提下应优选细根植物。 展开更多
关键词 初始含水率 三江并流区 消落带 草本植物根系 土壤崩解
下载PDF
含水率对根-土石复合体抗剪强度影响的试验研究——以垂丝海棠为例 被引量:1
19
作者 陶首仲 周花玉 +5 位作者 张卓超 樊东升 郑峰 刘含霞 周张路 刘建平 《四川农业大学学报》 CSCD 北大核心 2024年第3期613-619,共7页
【目的】探究含水率对根-土石复合体抗剪强度的影响规律。【方法】以四川农业大学雅安校区老板山典型固坡植物垂丝海棠为研究对象,固定剪切面含根量为0.2%、含石量为30%,设置5种含水率梯度(10%、15%、20%、25%、30%),分别在50、100、150... 【目的】探究含水率对根-土石复合体抗剪强度的影响规律。【方法】以四川农业大学雅安校区老板山典型固坡植物垂丝海棠为研究对象,固定剪切面含根量为0.2%、含石量为30%,设置5种含水率梯度(10%、15%、20%、25%、30%),分别在50、100、150和200 kPa的四级正应力下进行室内直接剪切试验,分析含水率对抗剪强度及其指标(黏聚力和内摩擦角)的影响规律。【结果】根-土石复合体的抗剪强度随正应力的增大而增高,符合莫尔-库伦强度准则,其抗剪强度随含水率的升高呈先下降后上升随之再下降的趋势,呈多峰曲线变化,在含水率为20%时取得最小值;含水率对根-土石复合体的黏聚力影响较大,在含水率为25%时取得临界峰值,但含水率对根-土石复合体的内摩擦角影响较小。【结论】含水率的变化主要影响根-土石复合体的黏聚力,从而影响根-土石复合体的峰值抗剪强度,而对内摩擦角的影响较小。研究结果可为植被加固土石混合体边坡提供一定的理论支撑。 展开更多
关键词 边坡工程 根-土石复合体 含水率 抗剪强度 垂丝海棠
下载PDF
土壤蒸发影响因素及抑制途径研究综述 被引量:1
20
作者 祝晨佳 高吉喜 《环境保护科学》 CAS 2024年第4期19-26,共8页
基于文献计量分析,综合了气象因素以及土壤本身性质对土壤蒸发的影响,并归纳提出了有效抑制土壤蒸发的途径。结果表明:土壤蒸发量与大气温度、降雨量、辐射量、风速、饱和水汽压差、土壤颜色深度和土壤含水率呈正相关,与大气湿度、干土... 基于文献计量分析,综合了气象因素以及土壤本身性质对土壤蒸发的影响,并归纳提出了有效抑制土壤蒸发的途径。结果表明:土壤蒸发量与大气温度、降雨量、辐射量、风速、饱和水汽压差、土壤颜色深度和土壤含水率呈正相关,与大气湿度、干土层厚度、土壤含砂量、土壤含盐量、土壤有机质含量呈负相关。土壤蒸发与地上作物种植方式、叶面积指数和地上生物量等也有密切关联。土壤蒸发的抑制途径主要有覆盖、耕作、施用土壤改良剂、合理灌溉和建构绿洲农田防护林系统等。掌握影响土壤蒸发的因素及其抑制途径,可帮助人们变消极防治为积极保墒,从而减少土壤水分的无效损失,提高水资源利用效率。 展开更多
关键词 蒸发 土壤蒸发 土壤含水量 土壤水分动态 蒸发抑制
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部