In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump...In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.展开更多
Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification a...Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification are two key steps. The dynamometer card is firstly divided into four parts which include different production information according to the "four point method" used in actual oilfield production, and then the moment invariants for pattern recognition are extracted. An improved support vector machine (SVM) method is used for pattern classification whose error penalty parameter C and kernel function parameter g are optimally chosen by the particle swarm optimization (PSO) algorithm. The simulation results show the method proposed in this paper has good classification results.展开更多
A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method i...A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method is pattern recognition of a dynamometer card(DC)based on feature extraction and perceptron.The premise of this method is that the training and target data have the same distribution.However,the training data are collected from a field SRPS with different system parameters designed to adapt to production conditions,which may significantly affect the diagnostic accuracy.To address this issue,in this study,an improved model of the sucker rod string(SRS)is derived by adding faultparameter dimensions,with which DCs under 16 working conditions could be generated.Subsequently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working point of the target SRPS as training data.Meanwhile,to further improve the accuracy of the proposed method,the DC features are improved by relative normalization and using additional features of the DC position to increase the distance between different types of samples.The parameters of the perceptron are optimized to promote its discriminability.Finally,the accuracy and real-time performance of the proposed adaptive diagnosis method are validated using field data.展开更多
文摘In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.
基金support from the Key Project of the National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expenses of Ministry of Education (N100604001)
文摘Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification are two key steps. The dynamometer card is firstly divided into four parts which include different production information according to the "four point method" used in actual oilfield production, and then the moment invariants for pattern recognition are extracted. An improved support vector machine (SVM) method is used for pattern classification whose error penalty parameter C and kernel function parameter g are optimally chosen by the particle swarm optimization (PSO) algorithm. The simulation results show the method proposed in this paper has good classification results.
基金support by the Major Scientific and Technological Projects of CNPC under Grant no.ZD2019-184-004the National Research Council of Science and Technology Major Project under Grant no.2016ZX05042004+1 种基金the Fundamental Research Funds for the Central University under Grant no.20CX02307Athe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment under Grant no.20CX02307A
文摘A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod production system(SRPS)used in oil wells to ensure a safe and efficient production.The current diagnosis method is pattern recognition of a dynamometer card(DC)based on feature extraction and perceptron.The premise of this method is that the training and target data have the same distribution.However,the training data are collected from a field SRPS with different system parameters designed to adapt to production conditions,which may significantly affect the diagnostic accuracy.To address this issue,in this study,an improved model of the sucker rod string(SRS)is derived by adding faultparameter dimensions,with which DCs under 16 working conditions could be generated.Subsequently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working point of the target SRPS as training data.Meanwhile,to further improve the accuracy of the proposed method,the DC features are improved by relative normalization and using additional features of the DC position to increase the distance between different types of samples.The parameters of the perceptron are optimized to promote its discriminability.Finally,the accuracy and real-time performance of the proposed adaptive diagnosis method are validated using field data.