This paper presents a 1.8 GHz class-E controlled power amplifier (PA). The proposed power amplifier is designed with two-stage architecture. The main advantage of the proposed technique for output control power is a h...This paper presents a 1.8 GHz class-E controlled power amplifier (PA). The proposed power amplifier is designed with two-stage architecture. The main advantage of the proposed technique for output control power is a high 37 dB output power dynamic range with good average power adding efficiency. The measurement results show that the PA achieves a high power gain of 23 dBm and power added efficiency (PAE) by 38%. The circuit was post layout simulated in a standard 0.18 μm CMOS technology.展开更多
Class E变换器结构简单,变换效率高,有良好的发展前景。论文将磁集成技术应用到隔离型Class E变换器中,减小磁性元件的体积、重量、提高变换器的功率密度。文中详细分析了利用变压器漏感以及采用独立绕组两种磁集成方案,在此基础上,制...Class E变换器结构简单,变换效率高,有良好的发展前景。论文将磁集成技术应用到隔离型Class E变换器中,减小磁性元件的体积、重量、提高变换器的功率密度。文中详细分析了利用变压器漏感以及采用独立绕组两种磁集成方案,在此基础上,制作了输入12V、输出功率21W、输出电流0.43A的原理样机,通过实验验证了磁集成方案的有效性,从实验结果可以得出采用磁集成技术后,变换器中磁件的体积和重量明显降低,且变换器的效率有所提高。展开更多
This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadb...This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.展开更多
文摘This paper presents a 1.8 GHz class-E controlled power amplifier (PA). The proposed power amplifier is designed with two-stage architecture. The main advantage of the proposed technique for output control power is a high 37 dB output power dynamic range with good average power adding efficiency. The measurement results show that the PA achieves a high power gain of 23 dBm and power added efficiency (PAE) by 38%. The circuit was post layout simulated in a standard 0.18 μm CMOS technology.
文摘This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.