The nuclear data of n+^(240;242;244)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is u...The nuclear data of n+^(240;242;244)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is used to calculate the total, nonelastic, shape elastic cross sections, shape elastic scattering angular distributions, and transmission coefficients. The distorted-wave Born approximation is applied to calculate the direct inelastic scatterings to the discrete excited states. The nuclear reaction statistical models and fission theory are applied to describe neutron, proton, deuteron, triton, helium-3, alpha and c emissions, and fission consistently. The results thus obtained are compared with experimental data and the evaluated data obtained from ENDF/B-VII.1 and JENDL-4.0.展开更多
基金supported by the National Natural Science Foundation of China-NSAF(No.U1630122)IAEA Coordinated Research Projects(CRPs)on Recommended Input Parameter Library(RIPL)for Fission Cross Section Calculations(No.20464)
文摘The nuclear data of n+^(240;242;244)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is used to calculate the total, nonelastic, shape elastic cross sections, shape elastic scattering angular distributions, and transmission coefficients. The distorted-wave Born approximation is applied to calculate the direct inelastic scatterings to the discrete excited states. The nuclear reaction statistical models and fission theory are applied to describe neutron, proton, deuteron, triton, helium-3, alpha and c emissions, and fission consistently. The results thus obtained are compared with experimental data and the evaluated data obtained from ENDF/B-VII.1 and JENDL-4.0.