期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类 被引量:17
1
作者 许泽宇 沈占锋 +4 位作者 李杨 赵丽芳 柯映明 李苓苓 温奇 《遥感学报》 EI CSCD 北大核心 2022年第2期406-415,共10页
高分辨率遥感影像地物复杂,分类难度大,而深度学习方法可以提取地物更多更深层次的特征信息,适用于高分辨率遥感影像的地物分类。本文研究对高分辨率影像中不透水地面、建筑、低矮植被、树、车辆等地物的高精度分类。结合遥感多地物分... 高分辨率遥感影像地物复杂,分类难度大,而深度学习方法可以提取地物更多更深层次的特征信息,适用于高分辨率遥感影像的地物分类。本文研究对高分辨率影像中不透水地面、建筑、低矮植被、树、车辆等地物的高精度分类。结合遥感多地物分类的特点,以DeepLab v3+网络模型为基础,提出E-DeepLab网络模型。主要改进为:(1)改进编码器和解码器的结合方式,使用简洁有效的加成连接方式。(2)缩小单次上采样倍数,增加上采样层,提高编码器与解码器连接的紧密性。(3)使用改进的自适应权重损失函数,自动调节地物损失权重。同时根据数据特点,提出结合DSM、NDVI数据等多通道训练方式。使用两个地区数据进行实验,结果表明,两地区精度均明显优于原始DeepLab v3+模型和其他相关模型,Potsdam地区总体提取精度达到93.2%,建筑物提取精度达到97.8%,Vaihingen地区总体提取精度达到90.7%,建筑物提取精度达到96.3%。目视对比分类图和标准标记图,两者具有高度的一致性。本文所提出的E-DeepLab网络在高分辨率遥感影像地物高精度提取和分类中有较好的应用价值。 展开更多
关键词 遥感 高分辨率影像 深度学习 e-deeplab 自适应权重损失函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部