In this work,we design a twisting metamaterial for longitudinal-torsional(L-T)mode conversion in pipes through exploring the theory of perfect transmodal FabryPerot interference(TFPI).Assuming that the axial and radia...In this work,we design a twisting metamaterial for longitudinal-torsional(L-T)mode conversion in pipes through exploring the theory of perfect transmodal FabryPerot interference(TFPI).Assuming that the axial and radial motions in pipes can be decoupled,we find that the metamaterial can be designed in a rectangular coordinate system,which is much more convenient than that in a cylindrical system.Numerical calculation with detailed microstructures shows that an efficient L-T mode conversion can be obtained in pipes with different radii.In addition,we fabricate mode-converting microstructures on an aluminum pipe and conduct ultrasonic experiments,and the results are in good agreement with the numerical calculations.We expect that the proposed LT mode-converting metamaterial and its design methodology can be applied in various ultrasonic devices.展开更多
The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. C...The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. Calculation results indicate that the diffraction efficiency (DE) in magnitude is equal to the mode-conversion efficiency (MCE) under vertical bias magnetic field, but they differ greatly under inclined bias magnetic field. By comparison to the case of vertical magnetization, the DE or the MCE can be greatly increased under inclined magnetic field. The characteristic of the DE curves obtained is basically in agreement with the experimental result.展开更多
We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatia...We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even(odd) mode to the odd(even) mode in the W2 waveguide during the forward(backward)transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 d B unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits.展开更多
The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident...The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident angles and the wave frequencies are obtained for different electrons' temperature. The results show that the shapes of the density profiles and the electron's temperature create a certain effect on the coefficients of absorption, which reaches its peak value (about 50%) for appropriate parameters. Effective absorption occurs in a limited range of parameter q.展开更多
Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a...Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a monkey skull with the time-reversal method. Mode conversions between compressional and shear waves exist in the skull. Therefore, the wave field separation method is introduced to calculate the contributions of the two waves to the acoustic intensity and the heat source, respectively. The Pennes equation is used to depict the temperature field induced by ultrasound. Five computational models with the same incident angle of 0?and different distances from the focus for the skull and three computational models at different incident angles and the same distance from the focus for the skull are studied. Numerical results indicate that for all computational models, the acoustic intensity at the focus with mode conversions is 12.05%less than that without mode conversions on average. For the temperature rise, this percentage is 12.02%. Besides, an underestimation of both the acoustic intensity and the temperature rise in the skull tends to occur if mode conversions are ignored. However, if the incident angle exceeds 30?, the rules of the over-and under-estimation may be reversed. Moreover,shear waves contribute 20.54% of the acoustic intensity and 20.74% of the temperature rise in the skull on average for all computational models. The percentage of the temperature rise in the skull from shear waves declines with the increase of the duration of the ultrasound.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two co...This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two collective atomic modes are coupled via the virtual excitation of the cavity mode and the effective Hamiltonian corresponds to the frequency up-conversion. In the scheme the cavity mode is only virtually excited and thus the process is insensitive to cavity decay.展开更多
We have coupled an upright HG mode into a fiber-optic waveguide and used the application of stress to generate a Laguerre-Gaussian laser mode. We have generalized previous results by McGloin et al. by using a polarize...We have coupled an upright HG mode into a fiber-optic waveguide and used the application of stress to generate a Laguerre-Gaussian laser mode. We have generalized previous results by McGloin et al. by using a polarized input beam, a true 3-mode fiber and by applying the stress on a stripped piece of the optical waveguide. These generalizations are necessary in order to perform quantum information experiments and obtain reliable information on the stress imposed on the optical fiber.展开更多
Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mod...Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mode crosstalk,and high integration.Here,we designed and fabricated a mode exchange device based on multiplane light conversion(MPLC),which supports the transmission of LP01,LP11a,LP11b,and LP21 modes in the C-band and L-band.The simulated exchanged mode purities are greater than 85%.The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems,with an insert loss of less than 2.2 dB and mode crosstalk below-21 dB due primarily to machining inaccuracies and alignment errors.We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device.It paves the way for flexible data exchange as a building block in MDM optical communication networks.展开更多
This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combin...This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.展开更多
All of us make conversations with others in a certain social context every day, though the mode to start them is various from different persons, occasions and circumstances. This paper is an attempt to analyze the var...All of us make conversations with others in a certain social context every day, though the mode to start them is various from different persons, occasions and circumstances. This paper is an attempt to analyze the variety of modes to open a conversation in different situations from the viewpoint of discourse analysis.展开更多
Experiments were conducted on risers with different mass ratios to study the effect of mode conversion and spanwise correlation. The slenderness ratio of the riser model was set as 169, and the Reynolds numbers are 16...Experiments were conducted on risers with different mass ratios to study the effect of mode conversion and spanwise correlation. The slenderness ratio of the riser model was set as 169, and the Reynolds numbers are 1600-14400. The dynamic responses of riser models versus reduced velocity were analyzed, and the spanwise displacement, frequency,and trajectory of the mode conversion from the lower to the higher mode were explored. The results revealed that the riser model with a higher mass ratio excites a higher number of modes. The conversion region of multi-mode competition exists and narrows with the increasing mass ratio. Mode conversion is continuous and manifests as the transmission of peaks and troughs in mode shape: the peaks and troughs of mode shape move up in the mode stable development region and move down in the mode conversion region. The single-mode dominating vibration exhibits a standing wave feature, and the traveling wave feature is significant in the mode conversion region. Furthermore, the frequency jump is always transmitted from the trough to the peak of the mode shape, and finally, all the axial positions vibrate at the same frequency. The trajectory in the mode conversion region deviates from the 8-shape and recovers the standard8-shape at the middle and late stages of the mode stable development region.展开更多
本文提出利用级联声光效应器和耦合回音壁模式微球腔的方案来实现非对称传输效果,并进行理论和实验验证.实验中利用加热拉锥的方式制备了两段式光纤,可同时实现声光效应的激发和回音壁模式的耦合.利用光纤中声光效应将纤芯基模中的矢量...本文提出利用级联声光效应器和耦合回音壁模式微球腔的方案来实现非对称传输效果,并进行理论和实验验证.实验中利用加热拉锥的方式制备了两段式光纤,可同时实现声光效应的激发和回音壁模式的耦合.利用光纤中声光效应将纤芯基模中的矢量模式转换到包层高阶模式,由于基模中不同矢量模式转换包层模式的矢量模式也不同,从而产生类似双折射效果,使输出的包层模式产生偏振变化.而后通过耦合回音壁模式微腔将包层模式转换回纤芯基模.由于回音壁模式的偏振选择效果,使得相反方向入射光能量具有不同的透射特性,其传输隔离度可达17 d B.此外,对两个方向传输的透射率随偏振角度变化进行测试,测得声光效应带来的偏振变化约为80°.本文的非对称传输方案继承了声光器件响应迅速、调谐性良好的优势,同时具有全光纤结构和无工作阈值的特点,在光开关、光隔离器等场景具有重要的应用潜力.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.U2033208,52192633)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-006)+1 种基金the China Postdoctoral Science Foundation(No.2020TQ0241)the Innovative Scientific Program of China Nuclear Power Engineering Co.,Ltd。
文摘In this work,we design a twisting metamaterial for longitudinal-torsional(L-T)mode conversion in pipes through exploring the theory of perfect transmodal FabryPerot interference(TFPI).Assuming that the axial and radial motions in pipes can be decoupled,we find that the metamaterial can be designed in a rectangular coordinate system,which is much more convenient than that in a cylindrical system.Numerical calculation with detailed microstructures shows that an efficient L-T mode conversion can be obtained in pipes with different radii.In addition,we fabricate mode-converting microstructures on an aluminum pipe and conduct ultrasonic experiments,and the results are in good agreement with the numerical calculations.We expect that the proposed LT mode-converting metamaterial and its design methodology can be applied in various ultrasonic devices.
文摘The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. Calculation results indicate that the diffraction efficiency (DE) in magnitude is equal to the mode-conversion efficiency (MCE) under vertical bias magnetic field, but they differ greatly under inclined bias magnetic field. By comparison to the case of vertical magnetization, the DE or the MCE can be greatly increased under inclined magnetic field. The characteristic of the DE curves obtained is basically in agreement with the experimental result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372037 and 61307069)Beijing Excellent Ph.D. Thesis Guidance Foundation,China(Grant No.20131001301)the Natural Science Foundation of Shanxi Province,China(Grant No.2013021017-3)
文摘We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even(odd) mode to the odd(even) mode in the W2 waveguide during the forward(backward)transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 d B unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits.
基金The project supported by National Natural Science Foundation of China (Nos. 40336052, 10375063)
文摘The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident angles and the wave frequencies are obtained for different electrons' temperature. The results show that the shapes of the density profiles and the electron's temperature create a certain effect on the coefficients of absorption, which reaches its peak value (about 50%) for appropriate parameters. Effective absorption occurs in a limited range of parameter q.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81527901,11604361,and 91630309)
文摘Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a monkey skull with the time-reversal method. Mode conversions between compressional and shear waves exist in the skull. Therefore, the wave field separation method is introduced to calculate the contributions of the two waves to the acoustic intensity and the heat source, respectively. The Pennes equation is used to depict the temperature field induced by ultrasound. Five computational models with the same incident angle of 0?and different distances from the focus for the skull and three computational models at different incident angles and the same distance from the focus for the skull are studied. Numerical results indicate that for all computational models, the acoustic intensity at the focus with mode conversions is 12.05%less than that without mode conversions on average. For the temperature rise, this percentage is 12.02%. Besides, an underestimation of both the acoustic intensity and the temperature rise in the skull tends to occur if mode conversions are ignored. However, if the incident angle exceeds 30?, the rules of the over-and under-estimation may be reversed. Moreover,shear waves contribute 20.54% of the acoustic intensity and 20.74% of the temperature rise in the skull on average for all computational models. The percentage of the temperature rise in the skull from shear waves declines with the increase of the duration of the ultrasound.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
基金supported by the Doctoral Foundation of the Ministry of Education of China (Grant No 20070386002)
文摘This paper presents a scheme for realizing the frequency up-conversion between two collective atomic modes. In the scheme two atomic samples are coupled to a cavity mode. Under the large detuning condition, the two collective atomic modes are coupled via the virtual excitation of the cavity mode and the effective Hamiltonian corresponds to the frequency up-conversion. In the scheme the cavity mode is only virtually excited and thus the process is insensitive to cavity decay.
文摘We have coupled an upright HG mode into a fiber-optic waveguide and used the application of stress to generate a Laguerre-Gaussian laser mode. We have generalized previous results by McGloin et al. by using a polarized input beam, a true 3-mode fiber and by applying the stress on a stripped piece of the optical waveguide. These generalizations are necessary in order to perform quantum information experiments and obtain reliable information on the stress imposed on the optical fiber.
基金supported by the Guangdong Major Project of Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.U23A20372,61935013,62105215,and 62275171)+3 种基金the Shenzhen Peacock Plan(No.KQTD20170330110444030)the Stable Support Project of Shenzhen(Nos.20220810152651001 and 20220811103827001)the Natural Science Foundation of GuangdongProvince(Nos.2020A1515011185and 2022A1515011642)Shenzhen University(No.2019075)。
文摘Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing(MDM).However,there are challenges in realizing mode exchange with low insert loss,low mode crosstalk,and high integration.Here,we designed and fabricated a mode exchange device based on multiplane light conversion(MPLC),which supports the transmission of LP01,LP11a,LP11b,and LP21 modes in the C-band and L-band.The simulated exchanged mode purities are greater than 85%.The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems,with an insert loss of less than 2.2 dB and mode crosstalk below-21 dB due primarily to machining inaccuracies and alignment errors.We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device.It paves the way for flexible data exchange as a building block in MDM optical communication networks.
文摘This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.
文摘All of us make conversations with others in a certain social context every day, though the mode to start them is various from different persons, occasions and circumstances. This paper is an attempt to analyze the variety of modes to open a conversation in different situations from the viewpoint of discourse analysis.
基金financially supported by the National Natural Science Foundation of China (Grant No.U2006226)。
文摘Experiments were conducted on risers with different mass ratios to study the effect of mode conversion and spanwise correlation. The slenderness ratio of the riser model was set as 169, and the Reynolds numbers are 1600-14400. The dynamic responses of riser models versus reduced velocity were analyzed, and the spanwise displacement, frequency,and trajectory of the mode conversion from the lower to the higher mode were explored. The results revealed that the riser model with a higher mass ratio excites a higher number of modes. The conversion region of multi-mode competition exists and narrows with the increasing mass ratio. Mode conversion is continuous and manifests as the transmission of peaks and troughs in mode shape: the peaks and troughs of mode shape move up in the mode stable development region and move down in the mode conversion region. The single-mode dominating vibration exhibits a standing wave feature, and the traveling wave feature is significant in the mode conversion region. Furthermore, the frequency jump is always transmitted from the trough to the peak of the mode shape, and finally, all the axial positions vibrate at the same frequency. The trajectory in the mode conversion region deviates from the 8-shape and recovers the standard8-shape at the middle and late stages of the mode stable development region.
文摘本文提出利用级联声光效应器和耦合回音壁模式微球腔的方案来实现非对称传输效果,并进行理论和实验验证.实验中利用加热拉锥的方式制备了两段式光纤,可同时实现声光效应的激发和回音壁模式的耦合.利用光纤中声光效应将纤芯基模中的矢量模式转换到包层高阶模式,由于基模中不同矢量模式转换包层模式的矢量模式也不同,从而产生类似双折射效果,使输出的包层模式产生偏振变化.而后通过耦合回音壁模式微腔将包层模式转换回纤芯基模.由于回音壁模式的偏振选择效果,使得相反方向入射光能量具有不同的透射特性,其传输隔离度可达17 d B.此外,对两个方向传输的透射率随偏振角度变化进行测试,测得声光效应带来的偏振变化约为80°.本文的非对称传输方案继承了声光器件响应迅速、调谐性良好的优势,同时具有全光纤结构和无工作阈值的特点,在光开关、光隔离器等场景具有重要的应用潜力.