Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In litera...Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection.展开更多
Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it ...Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art.展开更多
Cloud computing is one of the most attractive and cost-saving models,which provides online services to end-users.Cloud computing allows the user to access data directly from any node.But nowadays,cloud security is one...Cloud computing is one of the most attractive and cost-saving models,which provides online services to end-users.Cloud computing allows the user to access data directly from any node.But nowadays,cloud security is one of the biggest issues that arise.Different types of malware are wreaking havoc on the clouds.Attacks on the cloud server are happening from both internal and external sides.This paper has developed a tool to prevent the cloud server from spamming attacks.When an attacker attempts to use different spamming techniques on a cloud server,the attacker will be intercepted through two effective techniques:Cloudflare and K-nearest neighbors(KNN)classification.Cloudflare will block those IP addresses that the attacker will use and prevent spamming attacks.However,the KNN classifiers will determine which area the spammer belongs to.At the end of the article,various prevention techniques for securing cloud servers will be discussed,a comparison will be made with different papers,a conclusion will be drawn based on different results.展开更多
Online reviews regarding purchasing services or products offered are the main source of users’opinions.To gain fame or profit,generally,spam reviews are written to demote or promote certain targeted products or servi...Online reviews regarding purchasing services or products offered are the main source of users’opinions.To gain fame or profit,generally,spam reviews are written to demote or promote certain targeted products or services.This practice is called review spamming.During the last few years,various techniques have been recommended to solve the problem of spam reviews.Previous spam detection study focuses on English reviews,with a lesser interest in other languages.Spam review detection in Arabic online sources is an innovative topic despite the vast amount of data produced.Thus,this study develops an Automated Spam Review Detection using optimal Stacked Gated Recurrent Unit(SRD-OSGRU)on Arabic Opinion Text.The presented SRD-OSGRU model mainly intends to classify Arabic reviews into two classes:spam and truthful.Initially,the presented SRD-OSGRU model follows different levels of data preprocessing to convert the actual review data into a compatible format.Next,unigram and bigram feature extractors are utilized.The SGRU model is employed in this study to identify and classify Arabic spam reviews.Since the trial-and-error adjustment of hyperparameters is a tedious process,a white shark optimizer(WSO)is utilized,boosting the detection efficiency of the SGRU model.The experimental validation of the SRD-OSGRU model is assessed under two datasets,namely DOSC dataset.An extensive comparison study pointed out the enhanced performance of the SRD-OSGRU model over other recent approaches.展开更多
Spammer detection is to identify and block malicious activities performing users.Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity ...Spammer detection is to identify and block malicious activities performing users.Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity of online social spaces.Previous research aimed to find spammers based on hybrid approaches of graph mining,posted content,and metadata,using small and manually labeled datasets.However,such hybrid approaches are unscalable,not robust,particular dataset dependent,and require numerous parameters,complex graphs,and natural language processing(NLP)resources to make decisions,which makes spammer detection impractical for real-time detection.For example,graph mining requires neighbors’information,posted content-based approaches require multiple tweets from user profiles,then NLP resources to make decisions that are not applicable in a real-time environment.To fill the gap,firstly,we propose a REal-time Metadata based Spammer detection(REMS)model based on only metadata features to identify spammers,which takes the least number of parameters and provides adequate results.REMS is a scalable and robust model that uses only 19 metadata features of Twitter users to induce 73.81%F1-Score classification accuracy using a balanced training dataset(50%spam and 50%genuine users).The 19 features are 8 original and 11 derived features from the original features of Twitter users,identified with extensive experiments and analysis.Secondly,we present the largest and most diverse dataset of published research,comprising 211 K spam users and 1 million genuine users.The diversity of the dataset can be measured as it comprises users who posted 2.1 million Tweets on seven topics(100 hashtags)from 6 different geographical locations.The REMS’s superior classification performance with multiple machine and deep learning methods indicates that only metadata features have the potential to identify spammers rather than focusing on volatile posted content and complex graph structures.Dataset and REMS’s codes are available on GitHub(www.github.com/mhadnanali/REMS).展开更多
Spam emails pose a threat to individuals. The proliferation of spam emails daily has rendered traditional machine learning and deep learning methods for screening them ineffective and inefficient. In our research, we ...Spam emails pose a threat to individuals. The proliferation of spam emails daily has rendered traditional machine learning and deep learning methods for screening them ineffective and inefficient. In our research, we employ deep neural networks like RNN, LSTM, and GRU, incorporating attention mechanisms such as Bahdanua, scaled dot product (SDP), and Luong scaled dot product self-attention for spam email filtering. We evaluate our approach on various datasets, including Trec spam, Enron spam emails, SMS spam collections, and the Ling spam dataset, which constitutes a substantial custom dataset. All these datasets are publicly available. For the Enron dataset, we attain an accuracy of 99.97% using LSTM with SDP self-attention. Our custom dataset exhibits the highest accuracy of 99.01% when employing GRU with SDP self-attention. The SMS spam collection dataset yields a peak accuracy of 99.61% with LSTM and SDP attention. Using the GRU (Gated Recurrent Unit) alongside Luong and SDP (Structured Self-Attention) attention mechanisms, the peak accuracy of 99.89% in the Ling spam dataset. For the Trec spam dataset, the most accurate results are achieved using Luong attention LSTM, with an accuracy rate of 99.01%. Our performance analyses consistently indicate that employing the scaled dot product attention mechanism in conjunction with gated recurrent neural networks (GRU) delivers the most effective results. In summary, our research underscores the efficacy of employing advanced deep learning techniques and attention mechanisms for spam email filtering, with remarkable accuracy across multiple datasets. This approach presents a promising solution to the ever-growing problem of spam emails.展开更多
文摘Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection.
文摘Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art.
文摘Cloud computing is one of the most attractive and cost-saving models,which provides online services to end-users.Cloud computing allows the user to access data directly from any node.But nowadays,cloud security is one of the biggest issues that arise.Different types of malware are wreaking havoc on the clouds.Attacks on the cloud server are happening from both internal and external sides.This paper has developed a tool to prevent the cloud server from spamming attacks.When an attacker attempts to use different spamming techniques on a cloud server,the attacker will be intercepted through two effective techniques:Cloudflare and K-nearest neighbors(KNN)classification.Cloudflare will block those IP addresses that the attacker will use and prevent spamming attacks.However,the KNN classifiers will determine which area the spammer belongs to.At the end of the article,various prevention techniques for securing cloud servers will be discussed,a comparison will be made with different papers,a conclusion will be drawn based on different results.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4310373DSR58The authors are thankful to the Deanship of ScientificResearch atNajranUniversity for funding thiswork under theResearch Groups Funding program grant code(NU/RG/SERC/11/7).
文摘Online reviews regarding purchasing services or products offered are the main source of users’opinions.To gain fame or profit,generally,spam reviews are written to demote or promote certain targeted products or services.This practice is called review spamming.During the last few years,various techniques have been recommended to solve the problem of spam reviews.Previous spam detection study focuses on English reviews,with a lesser interest in other languages.Spam review detection in Arabic online sources is an innovative topic despite the vast amount of data produced.Thus,this study develops an Automated Spam Review Detection using optimal Stacked Gated Recurrent Unit(SRD-OSGRU)on Arabic Opinion Text.The presented SRD-OSGRU model mainly intends to classify Arabic reviews into two classes:spam and truthful.Initially,the presented SRD-OSGRU model follows different levels of data preprocessing to convert the actual review data into a compatible format.Next,unigram and bigram feature extractors are utilized.The SGRU model is employed in this study to identify and classify Arabic spam reviews.Since the trial-and-error adjustment of hyperparameters is a tedious process,a white shark optimizer(WSO)is utilized,boosting the detection efficiency of the SGRU model.The experimental validation of the SRD-OSGRU model is assessed under two datasets,namely DOSC dataset.An extensive comparison study pointed out the enhanced performance of the SRD-OSGRU model over other recent approaches.
基金supported by the Guangzhou Government Project(Grant No.62216235)the National Natural Science Foundation of China(Grant Nos.61573328,622260-1).
文摘Spammer detection is to identify and block malicious activities performing users.Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity of online social spaces.Previous research aimed to find spammers based on hybrid approaches of graph mining,posted content,and metadata,using small and manually labeled datasets.However,such hybrid approaches are unscalable,not robust,particular dataset dependent,and require numerous parameters,complex graphs,and natural language processing(NLP)resources to make decisions,which makes spammer detection impractical for real-time detection.For example,graph mining requires neighbors’information,posted content-based approaches require multiple tweets from user profiles,then NLP resources to make decisions that are not applicable in a real-time environment.To fill the gap,firstly,we propose a REal-time Metadata based Spammer detection(REMS)model based on only metadata features to identify spammers,which takes the least number of parameters and provides adequate results.REMS is a scalable and robust model that uses only 19 metadata features of Twitter users to induce 73.81%F1-Score classification accuracy using a balanced training dataset(50%spam and 50%genuine users).The 19 features are 8 original and 11 derived features from the original features of Twitter users,identified with extensive experiments and analysis.Secondly,we present the largest and most diverse dataset of published research,comprising 211 K spam users and 1 million genuine users.The diversity of the dataset can be measured as it comprises users who posted 2.1 million Tweets on seven topics(100 hashtags)from 6 different geographical locations.The REMS’s superior classification performance with multiple machine and deep learning methods indicates that only metadata features have the potential to identify spammers rather than focusing on volatile posted content and complex graph structures.Dataset and REMS’s codes are available on GitHub(www.github.com/mhadnanali/REMS).
文摘Spam emails pose a threat to individuals. The proliferation of spam emails daily has rendered traditional machine learning and deep learning methods for screening them ineffective and inefficient. In our research, we employ deep neural networks like RNN, LSTM, and GRU, incorporating attention mechanisms such as Bahdanua, scaled dot product (SDP), and Luong scaled dot product self-attention for spam email filtering. We evaluate our approach on various datasets, including Trec spam, Enron spam emails, SMS spam collections, and the Ling spam dataset, which constitutes a substantial custom dataset. All these datasets are publicly available. For the Enron dataset, we attain an accuracy of 99.97% using LSTM with SDP self-attention. Our custom dataset exhibits the highest accuracy of 99.01% when employing GRU with SDP self-attention. The SMS spam collection dataset yields a peak accuracy of 99.61% with LSTM and SDP attention. Using the GRU (Gated Recurrent Unit) alongside Luong and SDP (Structured Self-Attention) attention mechanisms, the peak accuracy of 99.89% in the Ling spam dataset. For the Trec spam dataset, the most accurate results are achieved using Luong attention LSTM, with an accuracy rate of 99.01%. Our performance analyses consistently indicate that employing the scaled dot product attention mechanism in conjunction with gated recurrent neural networks (GRU) delivers the most effective results. In summary, our research underscores the efficacy of employing advanced deep learning techniques and attention mechanisms for spam email filtering, with remarkable accuracy across multiple datasets. This approach presents a promising solution to the ever-growing problem of spam emails.