Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)...Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.展开更多
With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important forc...With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important force in the global economy, and the progress of the BRICS countries' trade facilitation level has an important impact on the global trade environment. This paper conducts an in-depth study of the dynamic changes in BRICS trade facilitation from 2013 to 2022, and uses an extended gravity model to analyze the specific impact of this change on China's exports using cross-border e-commerce. The results show that although the BRICS countries have made some progress in trade facilitation, the overall level still needs to be improved, and there are obvious differences among member countries. However, the improvement of trade facilitation among BRICS countries has undoubtedly brought significant positive effects to China's exports using cross-border e-commerce.展开更多
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the...This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.展开更多
Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all ...Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.展开更多
In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and ...In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and unleash the consumption potential in the countryside.Based on data from China Family Panel Studies,this paper adopts a staggered difference-in-differences method to assess the impact of the e-commerce to enter rural areas on the consumption disparity among rural households.Findings:the comprehensive demonstration work of promoting e-commerce to enter rural areas has reduced the consumption disparity among rural households through the following mechanisms.Firstly,this policy initiative has mitigated the consumption-inhibiting effect on rural household consumption due to the local market size and external market accessibility by promoting the distribution of consumer goods to villages.Secondly,this policy initiative has also increased the agricultural income of rural households and reduced their consumption disparity by distributing farm produce to cities and enhancing the agricultural income of rural households.Moreover,the work is characterized by inclusive growth and is not susceptible to the“elite capture”phenomenon.展开更多
E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as...E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as independent variables.A theoretical model is constructed with perceived value and risk as intermediaries and the consumers’purchase intention as the dependent variable,and corresponding hypotheses are put forward.We designed the scale,collected relevant data,and tested the model hypothesis using Statistical Package for Social Sciences(SPSS)and Analysis of Moment Structure(AMOS)software.The study found that the number of comments and product quality had a significant impact on perceived value,perceived risk,and consumers’purchase intention.From this conclusion,it is suggested that businesses should control the number of comments,strengthen the product quality of comments,and distinguish the repetition degree of the content of live broadcasts.展开更多
The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural indus...The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural industry,rural e-commerce is showing a vigorous momentum of development.Traditionally,agricultural products are mainly sold through traditional farmers’markets,which are subjected to geography and channel limitations,resulting in inefficient circulation of agricultural products.This paper analyzes the definition,the status quo,as well as the influencing factors of rural e-commerce development.On this basis,countermeasures for the advancement of rural e-commerce development are put forward.展开更多
With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocationa...With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocational colleges have been widely used to carry out education and teaching,and has achieved remarkable results.Based on this,colleges and universities’electronic commerce(e-commerce)professional teachers should try to rely on the Internet to build information teaching classrooms,introduce advanced methods to build efficient classrooms by integrating teaching resources,and optimize the top-level design,so as to activate the classroom atmosphere,mobilize students’emotions,make them immersed in the teaching of electronic commerce courses.In view of this,this paper combines the existing theory and experience,first analyzes the dilemma faced by the current teaching of e-commerce in vocational colleges,then discusses the practical significance of teaching reform based on the Internet era,and lastly puts forward the specific practice path.展开更多
This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Fi...This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Firstly,the relevant concepts were defined,and then the unique attributes of mobile community e-commerce were analyzed.As a typical representative of mobile community e-commerce,Little Red Book introduces the background and characteristics of its platform,analyzes its mobile community operation mode,and focuses on exploring how to establish a mobile community e-commerce platform and effective operation mode under the empowerment of AI technology,to provide some reference and inspiration for the development and operation of Little Red Book and other e-commerce platform enterprises.展开更多
The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on...The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics.展开更多
Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust v...Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust value in a short time,and brings many disadvantages,uncertainties and even attacks.To solve this problem,a transaction frequency based trust is proposed in this study.The proposed method is composed of two parts.The first part is built on the classic Bayes analysis based trust modelswhich are ease of computing for the E-commerce system.The second part is the transaction frequency module which can mitigate the potential insecurity caused by one participating entity gaining trust in a short time.Simulations show that the proposed method can effectively mitigate the self-promoting attacks so as to maintain the function of E-commerce system.展开更多
The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional ma...The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional machine learning approaches suffer from several problems,including an excessively high number of network parameters,which decreases the efficiency and increases the difficulty of training the network,while simultaneously leading to network overfitting.In addition,the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks.The present work addresses these issues by proposing a convolutional neural network(CNN)framework for detecting ecommerce fraud,where network training is conducted using historical market transaction data.The number of network parameters reduces via the local perception field and weight sharing inherent in the CNN framework.In addition,this deep learning framework enables the use of an algorithmiclevel approach to address dataset imbalance by focusing the CNN model on minority data classes.The proposed CNN model is trained and tested using a large public e-commerce service dataset from 2018,and the test results demonstrate that the model provides higher fraud prediction accuracy than existing state-of-the-art methods.展开更多
Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as...Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.展开更多
This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” make...This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” makes up the Kalahari Supergroup. Sedimentological and geochemical analyses have enabled us to characterize these sandstones and determine their origin, the conditions of their formation and the tectonic context in which they were developed. The results show that the sandstones are quartz arenites with a high level of mineralogical, textural and chemical maturity. They are recycled sandstones, formed in an intracratonic sedimentary basin, in the context of a passive continental margin, after a long fluvial transport of sediments. These sandstones initially come from intense alteration of magmatic rocks with felsic composition, mainly tonalite-trondhjemite-granodiorite (TTG) complexes, in hot, humid palaeoclimatic conditions and oxidizing environments.展开更多
Context information is significant for semantic extraction and recovery of messages in semantic communication.However,context information is not fully utilized in the existing semantic communication systems since re-l...Context information is significant for semantic extraction and recovery of messages in semantic communication.However,context information is not fully utilized in the existing semantic communication systems since re-lationships between sentences are often ignored.In this paper,we propose an Extended Context-based Semantic Communication(ECSC)system for text transmission,in which context information within and between sentences is explored for semantic representation and recovery.At the encoder,self-attention and segment-level relative attention are used to extract context information within and between sentences,respectively.In addition,a gate mechanism is adopted at the encoder to incorporate the context information from different ranges.At the decoder,Transformer-XL is introduced to obtain more semantic information from the historical communication processes for semantic recovery.Simulation results show the effectiveness of our proposed model in improving the semantic accuracy between transmitted and recovered messages under various channel conditions.展开更多
With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,...With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,and there is a gradual improvement in laws and regulations governing cross-border e-commerce,coupled with increased government support.Despite the impact of the COVID-19 pandemic on the market economy,overall development has been steadily improving.The Internet population is expanding,the online retail market is experiencing rapid growth,the consumption structure is undergoing transformation and upgrading,and the e-commerce market is demonstrating significant potential.The advancement of technologies such as big data,artificial intelligence,blockchain,and supply chain has provided more efficient operational support for the cross-border e-commerce industry.Against the backdrop of the emergence of new forms of cross-border e-commerce in China post-pandemic,this paper utilizes the PEST model to analyze the macro environment of cross-border e-commerce in China and project its future development trends.展开更多
In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal ...In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.展开更多
Objective To analyze the problems of pharmaceutical e-commerce and provide strategies for its development in the future B2C mode since drug network management has great potential in China.Methods By collecting,identif...Objective To analyze the problems of pharmaceutical e-commerce and provide strategies for its development in the future B2C mode since drug network management has great potential in China.Methods By collecting,identifying,and conducting literature research,PEST-SWOT identification and positioning of pharmaceutical e-commerce in the B2C mode were carried out.Results and Conclusion A PEST-SWOT analysis matrix was established to analyze the status of B2C pharmaceutical e-commerce,and to summarize its advantages,disadvantages,opportunities and threats from four perspectives of politics,economy,society and technology.Suggestions on cultivating compound talents proficient in medicine and e-commerce,exploring online payment methods for medical insurance,integration of upstream and downstream of the industrial chain and data sharing are put forward to promote the healthy and long-term development of pharmaceutical e-commerce under the background of big data.展开更多
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati...Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.展开更多
Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view ...Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.展开更多
基金supported by the Leading Talent Support Program for Agricultural Talents of the Chinese Academy of Agricultural Sciences(TCS2022020)the General program of National Natural Science Foundation of China(1573263)。
文摘Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.
基金Supported by Western Project of National Social Science Fund of China(23XJY013)Project of Social Science Foundation of Shaanxi Province(2022D032).
文摘With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important force in the global economy, and the progress of the BRICS countries' trade facilitation level has an important impact on the global trade environment. This paper conducts an in-depth study of the dynamic changes in BRICS trade facilitation from 2013 to 2022, and uses an extended gravity model to analyze the specific impact of this change on China's exports using cross-border e-commerce. The results show that although the BRICS countries have made some progress in trade facilitation, the overall level still needs to be improved, and there are obvious differences among member countries. However, the improvement of trade facilitation among BRICS countries has undoubtedly brought significant positive effects to China's exports using cross-border e-commerce.
文摘This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.
文摘Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.
基金National Natural Science Foundation of China(NSFC)Youth Project“Research on Household Debt Behavior and Its Impact on Economic Inequality in the Context of Common Prosperity”(Grant No.72203136),the Youth Project of the Guangdong Planning Office of Philosophy and Social Science(GDPOPSS)“E-commerce Development and Consumption Disparity of Rural Households:Theoretical Mechanism,Empirical Test and Policy Optimization”(Grant No.GD24YYJ27).
文摘In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and unleash the consumption potential in the countryside.Based on data from China Family Panel Studies,this paper adopts a staggered difference-in-differences method to assess the impact of the e-commerce to enter rural areas on the consumption disparity among rural households.Findings:the comprehensive demonstration work of promoting e-commerce to enter rural areas has reduced the consumption disparity among rural households through the following mechanisms.Firstly,this policy initiative has mitigated the consumption-inhibiting effect on rural household consumption due to the local market size and external market accessibility by promoting the distribution of consumer goods to villages.Secondly,this policy initiative has also increased the agricultural income of rural households and reduced their consumption disparity by distributing farm produce to cities and enhancing the agricultural income of rural households.Moreover,the work is characterized by inclusive growth and is not susceptible to the“elite capture”phenomenon.
文摘E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as independent variables.A theoretical model is constructed with perceived value and risk as intermediaries and the consumers’purchase intention as the dependent variable,and corresponding hypotheses are put forward.We designed the scale,collected relevant data,and tested the model hypothesis using Statistical Package for Social Sciences(SPSS)and Analysis of Moment Structure(AMOS)software.The study found that the number of comments and product quality had a significant impact on perceived value,perceived risk,and consumers’purchase intention.From this conclusion,it is suggested that businesses should control the number of comments,strengthen the product quality of comments,and distinguish the repetition degree of the content of live broadcasts.
基金Research on the Measurement of the Development Level of Rural E-commerce and the Enhancement of Profitability in Guangxi(Project No.2022KY0618).
文摘The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural industry,rural e-commerce is showing a vigorous momentum of development.Traditionally,agricultural products are mainly sold through traditional farmers’markets,which are subjected to geography and channel limitations,resulting in inefficient circulation of agricultural products.This paper analyzes the definition,the status quo,as well as the influencing factors of rural e-commerce development.On this basis,countermeasures for the advancement of rural e-commerce development are put forward.
文摘With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocational colleges have been widely used to carry out education and teaching,and has achieved remarkable results.Based on this,colleges and universities’electronic commerce(e-commerce)professional teachers should try to rely on the Internet to build information teaching classrooms,introduce advanced methods to build efficient classrooms by integrating teaching resources,and optimize the top-level design,so as to activate the classroom atmosphere,mobilize students’emotions,make them immersed in the teaching of electronic commerce courses.In view of this,this paper combines the existing theory and experience,first analyzes the dilemma faced by the current teaching of e-commerce in vocational colleges,then discusses the practical significance of teaching reform based on the Internet era,and lastly puts forward the specific practice path.
基金Phased Research Key Project of Shanghai China Vocational Education Association“Research on Digital Transformation Path of Vocational Education Driven by AIGC from the Perspective of New Quality Productivity”,Phased Research Project of Shanghai Computer Industry Association“The Reform and Exploration of Cross-border E-commerce Talent Cultivation in Vocational Colleges from the Perspective of Industry Education Integration”(Project No.sctakt202404)。
文摘This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Firstly,the relevant concepts were defined,and then the unique attributes of mobile community e-commerce were analyzed.As a typical representative of mobile community e-commerce,Little Red Book introduces the background and characteristics of its platform,analyzes its mobile community operation mode,and focuses on exploring how to establish a mobile community e-commerce platform and effective operation mode under the empowerment of AI technology,to provide some reference and inspiration for the development and operation of Little Red Book and other e-commerce platform enterprises.
基金Under the auspices of National Natural Science Foundation of China(No.42071165,41801144)GDAS’Project of Science and Technology Development(No.2023GDASZH-2023010101,2021GDASYL-20210103004)。
文摘The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics.
文摘Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust value in a short time,and brings many disadvantages,uncertainties and even attacks.To solve this problem,a transaction frequency based trust is proposed in this study.The proposed method is composed of two parts.The first part is built on the classic Bayes analysis based trust modelswhich are ease of computing for the E-commerce system.The second part is the transaction frequency module which can mitigate the potential insecurity caused by one participating entity gaining trust in a short time.Simulations show that the proposed method can effectively mitigate the self-promoting attacks so as to maintain the function of E-commerce system.
基金supported by the National Natural Science Foundation of China (No.72073041,No.61903131)2020 Hunan Provincial Higher Education Teaching Reform Research Project (Nos.HNJG-2020-1130,HNJG-2020-1124)+1 种基金2020 General Project of Hunan Social Science Fund (No.20B16)Outstanding Youth of Department of Education of Hunan Province (No.20B096)and the China Postdoctoral Science Foundation (No.2020M683715).
文摘The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional machine learning approaches suffer from several problems,including an excessively high number of network parameters,which decreases the efficiency and increases the difficulty of training the network,while simultaneously leading to network overfitting.In addition,the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks.The present work addresses these issues by proposing a convolutional neural network(CNN)framework for detecting ecommerce fraud,where network training is conducted using historical market transaction data.The number of network parameters reduces via the local perception field and weight sharing inherent in the CNN framework.In addition,this deep learning framework enables the use of an algorithmiclevel approach to address dataset imbalance by focusing the CNN model on minority data classes.The proposed CNN model is trained and tested using a large public e-commerce service dataset from 2018,and the test results demonstrate that the model provides higher fraud prediction accuracy than existing state-of-the-art methods.
文摘Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.
文摘This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” makes up the Kalahari Supergroup. Sedimentological and geochemical analyses have enabled us to characterize these sandstones and determine their origin, the conditions of their formation and the tectonic context in which they were developed. The results show that the sandstones are quartz arenites with a high level of mineralogical, textural and chemical maturity. They are recycled sandstones, formed in an intracratonic sedimentary basin, in the context of a passive continental margin, after a long fluvial transport of sediments. These sandstones initially come from intense alteration of magmatic rocks with felsic composition, mainly tonalite-trondhjemite-granodiorite (TTG) complexes, in hot, humid palaeoclimatic conditions and oxidizing environments.
基金supported in part by the National Natural Science Foundation of China under Grant No.61931020,U19B2024,62171449,,62001483in part by the science and technology innovation Program of Hunan Province under Grant No.2021JJ40690.
文摘Context information is significant for semantic extraction and recovery of messages in semantic communication.However,context information is not fully utilized in the existing semantic communication systems since re-lationships between sentences are often ignored.In this paper,we propose an Extended Context-based Semantic Communication(ECSC)system for text transmission,in which context information within and between sentences is explored for semantic representation and recovery.At the encoder,self-attention and segment-level relative attention are used to extract context information within and between sentences,respectively.In addition,a gate mechanism is adopted at the encoder to incorporate the context information from different ranges.At the decoder,Transformer-XL is introduced to obtain more semantic information from the historical communication processes for semantic recovery.Simulation results show the effectiveness of our proposed model in improving the semantic accuracy between transmitted and recovered messages under various channel conditions.
基金2023 National College Students’Innovation and Entrepreneurship Training Program“Research on Big Data Analysis and Application of Cross-Border E-commerce in the Context of Digital Trade”(Project number:202310621323)。
文摘With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,and there is a gradual improvement in laws and regulations governing cross-border e-commerce,coupled with increased government support.Despite the impact of the COVID-19 pandemic on the market economy,overall development has been steadily improving.The Internet population is expanding,the online retail market is experiencing rapid growth,the consumption structure is undergoing transformation and upgrading,and the e-commerce market is demonstrating significant potential.The advancement of technologies such as big data,artificial intelligence,blockchain,and supply chain has provided more efficient operational support for the cross-border e-commerce industry.Against the backdrop of the emergence of new forms of cross-border e-commerce in China post-pandemic,this paper utilizes the PEST model to analyze the macro environment of cross-border e-commerce in China and project its future development trends.
基金supported in part by the 2023 Key Supported Project of the 14th Five Year Plan for Education and Science in Hunan Province with No.ND230795.
文摘In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.
基金2021 General Scientific Research Project of Liaoning Provincial Department of Education(No.LJKR0298)Liaoning Provincial Social Science Planning Fund Office(2019)(No.L19BGL034).
文摘Objective To analyze the problems of pharmaceutical e-commerce and provide strategies for its development in the future B2C mode since drug network management has great potential in China.Methods By collecting,identifying,and conducting literature research,PEST-SWOT identification and positioning of pharmaceutical e-commerce in the B2C mode were carried out.Results and Conclusion A PEST-SWOT analysis matrix was established to analyze the status of B2C pharmaceutical e-commerce,and to summarize its advantages,disadvantages,opportunities and threats from four perspectives of politics,economy,society and technology.Suggestions on cultivating compound talents proficient in medicine and e-commerce,exploring online payment methods for medical insurance,integration of upstream and downstream of the industrial chain and data sharing are put forward to promote the healthy and long-term development of pharmaceutical e-commerce under the background of big data.
基金the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.
文摘Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.