The evolution of ordered interphase boundary (IPB) of Ni75AlxV25-x alloys was simulated using the microscopic phase-field method. Based on the atomic occupation probability figure on 2D and order parameters, it was fo...The evolution of ordered interphase boundary (IPB) of Ni75AlxV25-x alloys was simulated using the microscopic phase-field method. Based on the atomic occupation probability figure on 2D and order parameters, it was found that the IPB formed by different directions ofθ phase has great effect on the precipitation of γ ′ phase. The γ ′ phase precipitated at the IPB that is formed by [1 00]θ direction where the ( 001)θ plane is opposite, and then grows up and the shape is strap at final. The IPB structure between γ ′phase andθ phase is the same. There is no γ ′ phase precipitate at the IPB where the ( 002)θ and ( 001)θ planes are opposite, the ordered IPB is dissolved into disordered area. There is γ ′ phase precipitation at the IPB formed by the [ 001]θ and [1 00]θ directions, and the IPB structure is different between γ ′ phase and the different directions ofθ phase. The IPB where ( 001)γ′ and (1 00)θ plane opposite does not migrate during the γ ′ phase growth, and γ ′ phase grows along [1 00]θdirection.展开更多
Flexoelectricity is a two-way coupling effect between the strain gradient and electric field that exists in all dielectrics,regardless of point group symmetry.However,the high-order derivatives of displacements involv...Flexoelectricity is a two-way coupling effect between the strain gradient and electric field that exists in all dielectrics,regardless of point group symmetry.However,the high-order derivatives of displacements involved in the strain gradient pose challenges in solving electromechanical coupling problems incorporating the flexoelectric effect.In this study,we formulate a phase-field model for ferroelectric materials considering the flexoelectric effect.A four-node quadrilateral element with 20 degrees of freedom is constructed without introducing high-order shape functions.The microstructure evolution of domains is described by an independent order parameter,namely the spontaneous polarization governed by the time-dependent Ginzburg–Landau theory.The model is developed based on a thermodynamic framework,in which a set of microforces is introduced to construct the constitutive relation and evolution equation.For the flexoelectric part of electric enthalpy,the strain gradient is determined by interpolating the mechanical strain at the node via the values of Gaussian integration points in the isoparametric space.The model is shown to be capable of reproducing the classic analytical solution of dielectric materials incorporating the flexoelectric contribution.The model is verified by duplicating some typical phenomena in flexoelectricity in cylindrical tubes and truncated pyramids.A comparison is made between the polarization distribution in dielectrics and ferroelectrics.The model can reproduce the solution to the boundary value problem of the cylindrical flexoelectric tube,and demonstrate domain twisting at domain walls in ferroelectrics considering the flexoelectric effect.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
The ferroelectric domain formation(FDF) and polarization switching(FDPS) subjected to an external electric field are simulated using the phase-field(PF) method,and the FDPS mechanism under different external electric ...The ferroelectric domain formation(FDF) and polarization switching(FDPS) subjected to an external electric field are simulated using the phase-field(PF) method,and the FDPS mechanism under different external electric fields is discussed.The results show that the FDF is a process of nucleation and growth in ferroelectric without applying any external stress.Four kinds of parallelogram shaped ferroelectric domains are formed at the steady state,in which the 180° anti-phase domains regularly align along the 45° direction and the 90° anti-phase domains regularly distribute like a stepladder.Steady electric fields can rotate domain polarization by 90° and 180°,and force the orientation-favorite domains and the average polarization to grow into larger ones.The greater the steady electric field,the larger the average polarization at the steady state.In ferroelectrics subject to an alternating electric field,domain polarization switches to cause a hysteresis loop and an associated butterfly loop with the alternating electric field.The coercive field and remnant field are enhanced with the increase of the electric field frequency or strength,or with the decrease of temperature.展开更多
In this paper,we present a new model developed in order to analyze phenomena which arise in the solidification of binary mixtures using phase-field method,which incorporates the convection effects and the action of ma...In this paper,we present a new model developed in order to analyze phenomena which arise in the solidification of binary mixtures using phase-field method,which incorporates the convection effects and the action of magnetic field.The model consists of flow,concentration,phase field and energy systems which are nonlinear evolutive and coupled systems.It represents the non-isothermal anisotropic solidification process of a binary mixture together with the motion in a melt with the applied magnetic field.To illustrate our model,numerical simulations of the influence of magnetic-field on the evolution of dendrites during the solidification of the binary mixture of Nickel-Copper(Ni-Cu)are developed.The results demonstrate that the dendritic growth under the action of magnetic-field can be simulated by using our model.展开更多
In the process of preparation of semi-solid metal materials, a variety of factors would influence the preparing time and the morphology of non-dendritic microstructure. The aim of this work is using phase-field method...In the process of preparation of semi-solid metal materials, a variety of factors would influence the preparing time and the morphology of non-dendritic microstructure. The aim of this work is using phase-field method to simulate non-dendritic growth during preparation of AI-4Cu-Mg semi-solid alloy by electromagnetic stirring method (EMS method). Several factors such as the disturbance intensity, anisotropy, the thickness of the interface and the ratio of diffusivity in solid and liquid were considered. It is shown that decreasing the thickness of the interface results in more circular outline of particles, and increasing the diffusivity in solid can reduce degree of microsegregation. The disturbance intensity in the model can be connected with current intensity of stator or magnetic induction density impressed. Simulation results show that the larger the disturbance intensity or magnetic induction density, the more globular morphology the original phase in the matrix.展开更多
In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct expl...In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.展开更多
Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we hav...Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.展开更多
A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the dr...A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied.展开更多
Rechargeable batteries have a profound impact on our daily life so that it is urgent to capture the physical and chemical fundamentals affecting the operation and lifetime.The phase-field method is a powerful computat...Rechargeable batteries have a profound impact on our daily life so that it is urgent to capture the physical and chemical fundamentals affecting the operation and lifetime.The phase-field method is a powerful computational approach to describe and predict the evolution of mesoscale microstructures,which can help to understand the dynamic behavior of the material systems.In this review,we briefly introduce the theoretical framework of the phase-field model and its application in electrochemical systems,summarize the existing phase-field simulations in rechargeable batteries,and provide improvement,development,and problems to be considered of the future phase-field simulation in rechargeable batteries.展开更多
In order to study the distribution of shale gas reservoir in the Babaoshan Basin of Eastern Kunlun,the wide-field electromagnetic(WFEM)survey was carried out to obtain the spatial distribution characteristics of the u...In order to study the distribution of shale gas reservoir in the Babaoshan Basin of Eastern Kunlun,the wide-field electromagnetic(WFEM)survey was carried out to obtain the spatial distribution characteristics of the underground electrical volume resistivity based on the delineation of the scope of the Babaoshan Basin by regional gravity data.The basic characteristics of the basement,basin framework,and extension,vertical change,burial depth of dark mud shale in this area were identified,and the electrical distribution of the Babaoshan mud shale horizon was revealed,which has been proved to be a good geological effect by drilling.The exploration results show that the WFEM has significant effects on the exploration of shale gas occurrence strata,which meets the needs of investigation and evaluation of multi-layered and large-scale shale gas,and plays a good demonstration role in the follow-up shale gas exploration.展开更多
A phase-field model for growth of iron whiskers that includes convection around a particle was investigated during the process of fluidized pre-reduction. In the simulations, the phase-field method was coupled with fl...A phase-field model for growth of iron whiskers that includes convection around a particle was investigated during the process of fluidized pre-reduction. In the simulations, the phase-field method was coupled with flow field and reduction of iron oxide particles. The results showed that the reduction rate at local place had significant effects on the iron ions diffusion and the iron whiskers were more easily grown on the area containing low mole fraction of oxygen. The growth of iron whiskers in the model was investigated in two important simple situations: a velocity change flow and a CO concentration change flow. Because of high reduction rate and low surface energy, iron whiskers were more easily grown on the windward surface and the length of iron whiskers increased with gas velocity increasing. However, both the length and numbers of iron whiskers increased with CO concentration increasing due to the more nucleation site of iron whiskers created by CO adsorbed. When the gas velocity is higher than 0.3 m/s or CO mole fraction is high than 0.6, the nucleation incubation time would be rapidly decreased, which could give suggestions to control the operational parameters in the fluidized pre-reduction process.展开更多
The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous...The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
基金Project (50071046) supported by the National Natural Science Foundation of China Project (2002AA331051)supported by the National Hi-Tech Research and Development Program of China
文摘The evolution of ordered interphase boundary (IPB) of Ni75AlxV25-x alloys was simulated using the microscopic phase-field method. Based on the atomic occupation probability figure on 2D and order parameters, it was found that the IPB formed by different directions ofθ phase has great effect on the precipitation of γ ′ phase. The γ ′ phase precipitated at the IPB that is formed by [1 00]θ direction where the ( 001)θ plane is opposite, and then grows up and the shape is strap at final. The IPB structure between γ ′phase andθ phase is the same. There is no γ ′ phase precipitate at the IPB where the ( 002)θ and ( 001)θ planes are opposite, the ordered IPB is dissolved into disordered area. There is γ ′ phase precipitation at the IPB formed by the [ 001]θ and [1 00]θ directions, and the IPB structure is different between γ ′ phase and the different directions ofθ phase. The IPB where ( 001)γ′ and (1 00)θ plane opposite does not migrate during the γ ′ phase growth, and γ ′ phase grows along [1 00]θdirection.
基金funded by the National Natural Science Foundation of China(Grant No.12272020)Beijing Natural Science Foundation(Grant No.JQ21001)+1 种基金S.W.acknowledges support from the Fundamental Research Funds for the Central Universities(Grant No.YWF-23-SDHK-L-019)M.Y.acknowledges support from the National Natural Science Foundation of China(Grant Nos.12302134,12272173,and 11902150).
文摘Flexoelectricity is a two-way coupling effect between the strain gradient and electric field that exists in all dielectrics,regardless of point group symmetry.However,the high-order derivatives of displacements involved in the strain gradient pose challenges in solving electromechanical coupling problems incorporating the flexoelectric effect.In this study,we formulate a phase-field model for ferroelectric materials considering the flexoelectric effect.A four-node quadrilateral element with 20 degrees of freedom is constructed without introducing high-order shape functions.The microstructure evolution of domains is described by an independent order parameter,namely the spontaneous polarization governed by the time-dependent Ginzburg–Landau theory.The model is developed based on a thermodynamic framework,in which a set of microforces is introduced to construct the constitutive relation and evolution equation.For the flexoelectric part of electric enthalpy,the strain gradient is determined by interpolating the mechanical strain at the node via the values of Gaussian integration points in the isoparametric space.The model is shown to be capable of reproducing the classic analytical solution of dielectric materials incorporating the flexoelectric contribution.The model is verified by duplicating some typical phenomena in flexoelectricity in cylindrical tubes and truncated pyramids.A comparison is made between the polarization distribution in dielectrics and ferroelectrics.The model can reproduce the solution to the boundary value problem of the cylindrical flexoelectric tube,and demonstrate domain twisting at domain walls in ferroelectrics considering the flexoelectric effect.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
基金supported by the National Natural Science Foundation of China(Grant Nos.51075335,51174168,10902086,and 50875217)the NPU Foundation for Fundamental Research(Grant No.JC201005)
文摘The ferroelectric domain formation(FDF) and polarization switching(FDPS) subjected to an external electric field are simulated using the phase-field(PF) method,and the FDPS mechanism under different external electric fields is discussed.The results show that the FDF is a process of nucleation and growth in ferroelectric without applying any external stress.Four kinds of parallelogram shaped ferroelectric domains are formed at the steady state,in which the 180° anti-phase domains regularly align along the 45° direction and the 90° anti-phase domains regularly distribute like a stepladder.Steady electric fields can rotate domain polarization by 90° and 180°,and force the orientation-favorite domains and the average polarization to grow into larger ones.The greater the steady electric field,the larger the average polarization at the steady state.In ferroelectrics subject to an alternating electric field,domain polarization switches to cause a hysteresis loop and an associated butterfly loop with the alternating electric field.The coercive field and remnant field are enhanced with the increase of the electric field frequency or strength,or with the decrease of temperature.
文摘In this paper,we present a new model developed in order to analyze phenomena which arise in the solidification of binary mixtures using phase-field method,which incorporates the convection effects and the action of magnetic field.The model consists of flow,concentration,phase field and energy systems which are nonlinear evolutive and coupled systems.It represents the non-isothermal anisotropic solidification process of a binary mixture together with the motion in a melt with the applied magnetic field.To illustrate our model,numerical simulations of the influence of magnetic-field on the evolution of dendrites during the solidification of the binary mixture of Nickel-Copper(Ni-Cu)are developed.The results demonstrate that the dendritic growth under the action of magnetic-field can be simulated by using our model.
文摘In the process of preparation of semi-solid metal materials, a variety of factors would influence the preparing time and the morphology of non-dendritic microstructure. The aim of this work is using phase-field method to simulate non-dendritic growth during preparation of AI-4Cu-Mg semi-solid alloy by electromagnetic stirring method (EMS method). Several factors such as the disturbance intensity, anisotropy, the thickness of the interface and the ratio of diffusivity in solid and liquid were considered. It is shown that decreasing the thickness of the interface results in more circular outline of particles, and increasing the diffusivity in solid can reduce degree of microsegregation. The disturbance intensity in the model can be connected with current intensity of stator or magnetic induction density impressed. Simulation results show that the larger the disturbance intensity or magnetic induction density, the more globular morphology the original phase in the matrix.
基金financially supported by the Thirteenth Five-Year-Plan Major Project "Marine Shale Gas Exploration and Evaluation over Laifengxianfeng and Hefeng Block"(No.2016ZX05034004-004)China Huadian Engineering Co.,LTD(No.CHEC-KJ-2014-Z10)
文摘In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2230401,U1930401,and 12004048)the National Key Research and Development Program of China (Grant No.2021YFB3501503)+1 种基金the Science Challenge Project (Grant No.TZ2018002)the Foundation of LCP。
文摘Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.
基金Project supported by the National Natural Science Foundation of China(No.42202314)。
文摘A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied.
基金This work was supported by the National Natural Science Foundation of China(numbers U2030206,51802187,and 11874254)Shanghai Pujiang Program(number 2019PJD016)Shanghai Sailing Program(number 18YF1408700).
文摘Rechargeable batteries have a profound impact on our daily life so that it is urgent to capture the physical and chemical fundamentals affecting the operation and lifetime.The phase-field method is a powerful computational approach to describe and predict the evolution of mesoscale microstructures,which can help to understand the dynamic behavior of the material systems.In this review,we briefly introduce the theoretical framework of the phase-field model and its application in electrochemical systems,summarize the existing phase-field simulations in rechargeable batteries,and provide improvement,development,and problems to be considered of the future phase-field simulation in rechargeable batteries.
基金Project(2019-SF-141)supported by Science and Technology Program of Qinghai Province,ChinaProjects(2017042105kc055,2017042014ky014)supported by Geological Exploration Foundation of Qinghai Province,China。
文摘In order to study the distribution of shale gas reservoir in the Babaoshan Basin of Eastern Kunlun,the wide-field electromagnetic(WFEM)survey was carried out to obtain the spatial distribution characteristics of the underground electrical volume resistivity based on the delineation of the scope of the Babaoshan Basin by regional gravity data.The basic characteristics of the basement,basin framework,and extension,vertical change,burial depth of dark mud shale in this area were identified,and the electrical distribution of the Babaoshan mud shale horizon was revealed,which has been proved to be a good geological effect by drilling.The exploration results show that the WFEM has significant effects on the exploration of shale gas occurrence strata,which meets the needs of investigation and evaluation of multi-layered and large-scale shale gas,and plays a good demonstration role in the follow-up shale gas exploration.
基金This work is supported by the National Natural Science Foundation of China (51374263, 51674052)The authors are grateful for the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0003)National Natural Science Foundation of China (91634106, 51704048) is also acknowledged.
文摘A phase-field model for growth of iron whiskers that includes convection around a particle was investigated during the process of fluidized pre-reduction. In the simulations, the phase-field method was coupled with flow field and reduction of iron oxide particles. The results showed that the reduction rate at local place had significant effects on the iron ions diffusion and the iron whiskers were more easily grown on the area containing low mole fraction of oxygen. The growth of iron whiskers in the model was investigated in two important simple situations: a velocity change flow and a CO concentration change flow. Because of high reduction rate and low surface energy, iron whiskers were more easily grown on the windward surface and the length of iron whiskers increased with gas velocity increasing. However, both the length and numbers of iron whiskers increased with CO concentration increasing due to the more nucleation site of iron whiskers created by CO adsorbed. When the gas velocity is higher than 0.3 m/s or CO mole fraction is high than 0.6, the nucleation incubation time would be rapidly decreased, which could give suggestions to control the operational parameters in the fluidized pre-reduction process.
文摘The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.