期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Notes on the Borwein-Choi Conjecture of Littlewood Cyclotomic Polynomials
1
作者 Shao Fang HONG Wei CAOMathematical College, Sichuan University, Chengdu 610064, P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第1期65-76,共12页
Borwein and Choi conjectured that a polynomial P(x) with coefficients ±1 of degree N - 1 is cyclotomic iffP(x)=±Φp1(±x)ΦP2(±x^p1)…Φpr(±x^p1p2…pr-1),where N = P1P2 … pτ and the... Borwein and Choi conjectured that a polynomial P(x) with coefficients ±1 of degree N - 1 is cyclotomic iffP(x)=±Φp1(±x)ΦP2(±x^p1)…Φpr(±x^p1p2…pr-1),where N = P1P2 … pτ and the pi are primes, not necessarily distinct. Here Φ(x) := (x^p - 1)/(x - 1) is the p-th cyclotomic polynomial. They also proved the conjecture for N odd or a power of 2. In this paper we introduce a so-called E-transformation, by which we prove the conjecture for a wider variety of cases and present the key as well as a new approach to investigate the coniecture. 展开更多
关键词 cyclotomic polynomial Littlewood polynomial e-transformation Ramanujan sum least element
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部