This study was designed to find the susceptibility of Nitrofurantoin and Fosfomycin among urinary isolates of Escherichia.coli.Four hundred(400)urine samples were collected for susceptibility of nitrofurantoin and fos...This study was designed to find the susceptibility of Nitrofurantoin and Fosfomycin among urinary isolates of Escherichia.coli.Four hundred(400)urine samples were collected for susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli.All indoor and outdoor patients'urinary samples yielded growth of E.coli.Mid-stream urine specimens were inoculated on blood agar and CLED agar and incubated at 35±2°C.Growth was observed,and Escherichia coli was identified by Gram staining,Catalase,Motility test and API 20E(Bio murex)as per standard procedure.Antimicrobial susceptibility testing of isolates for nitrofurantoin and fosfomycin was carried out by the modified Kirby-Bauer disc diffusion method according to CLSI guidelines ATCC 25922.E.coli was used as a quality control strain.A total of 400 samples were tested susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli during this period.A total of 400 samples yielded the growth of E.coli,out of which 178(44.5%)were male and 222(55.5%)were female samples.Among males,18(10%)were tolerant to nitrofurantoin,and 2(1.1%)were tolerant to fosfomycin.Among females,9(4.09%)were susceptible to nitrofurantoin while 6(2.72%)were susceptible to fosfomycin.Among age groups below 45 years old,6(4.76%)were tolerant to nitrofurantoin,and 2(1.58%)were sensitive to fosfomycin.Between 46-66 years old,4(2.81%)were sensitive to nitrofurantoin,and 3(2.11%)were sensitive to fosfomycin.Between 67-90 years old,17(12.87%)were sensitive to nitrofurantoin,and 4(3.03%)were tolerant to fosfomycin.Fosfomycin and nitrofurantoin showed good susceptibility in urinary isolates of E.coli and can be used empirically in our setup.展开更多
AIM: To prepare a kind of magnetic iron-dextran nanopartides that was coated with anti-E.coli O157:H7 IgG, analyze its application conditions, and try to use it to isolate E.coli O157:H7 from foods. METHODS: Magnetic ...AIM: To prepare a kind of magnetic iron-dextran nanopartides that was coated with anti-E.coli O157:H7 IgG, analyze its application conditions, and try to use it to isolate E.coli O157:H7 from foods. METHODS: Magnetic iron-dextran nanopartides were prepared by the reaction of a mixture of ferric and ferrous ions with dextran polymers under alkaline conditions. The particles were coated with antiserum against E.coli O157: H7 by the periodate oxidation-borohydride reduction procedure. The oxidation time, amount of antibody coating the particles, amount of nanoparticles, incubation time and isolation time were varied to determine their effects on recovery of the organisms. Finally, the optimum conditions for isolating E.coli O157:H7 from food samples were established. RESULTS: E.coli O157:H7 can be isolated from samples within 15 min with the sensitivity of 101 CFU/mL or even less. In the presence of 108 CFU/mL of other organisms, the sensitivity is 101-102 CFU/mL. Nonspecific binding of other bacteria to the particles was not observed. Two and a half hours of enrichment is enough for the particles to detect the target from the food samples inoculated with 1 CFU/g. CONCLUSION: Isolation of target bacteria by immuno magnetic nanoparticles is an efficient method with high sensitivity and specificity. The technique is so simple that it can be operated in lab and field even by untrained personnel.展开更多
Antibiotics used for agricultural purpose has contributed to the increased prevalence of antibiotic-resistant bacteria. The goal of this study was to investigate the prevalence and antimicrobial resistance of ESBL-pro...Antibiotics used for agricultural purpose has contributed to the increased prevalence of antibiotic-resistant bacteria. The goal of this study was to investigate the prevalence and antimicrobial resistance of ESBL-producing E. coli in small-scaled poultry farms and retail chicken. The cultured E. coli isolates were subjected to phenotypic tests, susceptibility tests, and the polymerase chain reaction for detection of blacTX-M, blasHv, and blaTEM genes. From 120 samples each of chicken feces, retail chicken, soil and chicken feed, ESBL-producing E. coli isolates were detected in 75.9%, 63.6%, 39.2%, and 13.3% of the samples, respectively. Minimum inhibitory concentration (MICs) values indicated that ESBL-producing E. coli were resistance to ampicillin (MIC 〉 32 μg/mL), gentamicin (M1C ≥ 16 μg/mL), cefotaxime (MIC 〉 4 μg/mL) and cefhiaxone (MIC 〉 4 gg/mL), respectively. The total resistance for imipenem was also observed at 1.0% (MIC ≥ 4 gg/mL) and none of the isolates were resistant to ceftazidime (MIC 〉 16 μg/mL). ESBL-producing E. coli from chicken feces and retail chicken carried blasHv gene at a rate of 6.8% and 5.7%, respectively and blaCTX-M gene was also revealed at 2.9% in retail chicken. Moreover, ESBL-producing E. coli isolated from soil harbored blasnv and blaCTX-M genes at 5%. None of the feed samples yielded ESBLs genes. Twenty three resistance patterns were observed for multi-resistant ESBL-producing E. coli. This study highlights the prevalence of multi-antimicrobial resistant ESBL-producing E. coli in small-scaledpoultry farms and retail chicken, hence the need to review poultry management practices to minimize the occurrence.展开更多
文摘This study was designed to find the susceptibility of Nitrofurantoin and Fosfomycin among urinary isolates of Escherichia.coli.Four hundred(400)urine samples were collected for susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli.All indoor and outdoor patients'urinary samples yielded growth of E.coli.Mid-stream urine specimens were inoculated on blood agar and CLED agar and incubated at 35±2°C.Growth was observed,and Escherichia coli was identified by Gram staining,Catalase,Motility test and API 20E(Bio murex)as per standard procedure.Antimicrobial susceptibility testing of isolates for nitrofurantoin and fosfomycin was carried out by the modified Kirby-Bauer disc diffusion method according to CLSI guidelines ATCC 25922.E.coli was used as a quality control strain.A total of 400 samples were tested susceptibility of nitrofurantoin and fosfomycin among urinary isolates of E.coli during this period.A total of 400 samples yielded the growth of E.coli,out of which 178(44.5%)were male and 222(55.5%)were female samples.Among males,18(10%)were tolerant to nitrofurantoin,and 2(1.1%)were tolerant to fosfomycin.Among females,9(4.09%)were susceptible to nitrofurantoin while 6(2.72%)were susceptible to fosfomycin.Among age groups below 45 years old,6(4.76%)were tolerant to nitrofurantoin,and 2(1.58%)were sensitive to fosfomycin.Between 46-66 years old,4(2.81%)were sensitive to nitrofurantoin,and 3(2.11%)were sensitive to fosfomycin.Between 67-90 years old,17(12.87%)were sensitive to nitrofurantoin,and 4(3.03%)were tolerant to fosfomycin.Fosfomycin and nitrofurantoin showed good susceptibility in urinary isolates of E.coli and can be used empirically in our setup.
基金Supported by the National High-technology Research and Development Program of China (863 Program), No. 2003AA302260
文摘AIM: To prepare a kind of magnetic iron-dextran nanopartides that was coated with anti-E.coli O157:H7 IgG, analyze its application conditions, and try to use it to isolate E.coli O157:H7 from foods. METHODS: Magnetic iron-dextran nanopartides were prepared by the reaction of a mixture of ferric and ferrous ions with dextran polymers under alkaline conditions. The particles were coated with antiserum against E.coli O157: H7 by the periodate oxidation-borohydride reduction procedure. The oxidation time, amount of antibody coating the particles, amount of nanoparticles, incubation time and isolation time were varied to determine their effects on recovery of the organisms. Finally, the optimum conditions for isolating E.coli O157:H7 from food samples were established. RESULTS: E.coli O157:H7 can be isolated from samples within 15 min with the sensitivity of 101 CFU/mL or even less. In the presence of 108 CFU/mL of other organisms, the sensitivity is 101-102 CFU/mL. Nonspecific binding of other bacteria to the particles was not observed. Two and a half hours of enrichment is enough for the particles to detect the target from the food samples inoculated with 1 CFU/g. CONCLUSION: Isolation of target bacteria by immuno magnetic nanoparticles is an efficient method with high sensitivity and specificity. The technique is so simple that it can be operated in lab and field even by untrained personnel.
文摘Antibiotics used for agricultural purpose has contributed to the increased prevalence of antibiotic-resistant bacteria. The goal of this study was to investigate the prevalence and antimicrobial resistance of ESBL-producing E. coli in small-scaled poultry farms and retail chicken. The cultured E. coli isolates were subjected to phenotypic tests, susceptibility tests, and the polymerase chain reaction for detection of blacTX-M, blasHv, and blaTEM genes. From 120 samples each of chicken feces, retail chicken, soil and chicken feed, ESBL-producing E. coli isolates were detected in 75.9%, 63.6%, 39.2%, and 13.3% of the samples, respectively. Minimum inhibitory concentration (MICs) values indicated that ESBL-producing E. coli were resistance to ampicillin (MIC 〉 32 μg/mL), gentamicin (M1C ≥ 16 μg/mL), cefotaxime (MIC 〉 4 μg/mL) and cefhiaxone (MIC 〉 4 gg/mL), respectively. The total resistance for imipenem was also observed at 1.0% (MIC ≥ 4 gg/mL) and none of the isolates were resistant to ceftazidime (MIC 〉 16 μg/mL). ESBL-producing E. coli from chicken feces and retail chicken carried blasHv gene at a rate of 6.8% and 5.7%, respectively and blaCTX-M gene was also revealed at 2.9% in retail chicken. Moreover, ESBL-producing E. coli isolated from soil harbored blasnv and blaCTX-M genes at 5%. None of the feed samples yielded ESBLs genes. Twenty three resistance patterns were observed for multi-resistant ESBL-producing E. coli. This study highlights the prevalence of multi-antimicrobial resistant ESBL-producing E. coli in small-scaledpoultry farms and retail chicken, hence the need to review poultry management practices to minimize the occurrence.