Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pa...Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies formaking vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a nonpathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus.展开更多
A major challenge in vaccine design is to identify antigen presentation and delivery systems capable of rapidly stimulating both the humoral and cellular components of the immune system to elicit a strong and sustaine...A major challenge in vaccine design is to identify antigen presentation and delivery systems capable of rapidly stimulating both the humoral and cellular components of the immune system to elicit a strong and sustained immunity against different viral isolates. Approaches to achieve this end involve live attenuated and inactivated virions, viral vectors, DNA, and protein subunits. This review reports the state of current antigen delivery, and focuses on two innovative systems recently established at our labs. These systems are the filamentous bacteriophage fd and an icosahedral scaffold formed by the acyltransferase component(E2 protein) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus.展开更多
基金Supported by The grants from Nos.NIH R01AI AI074379 and MIUR-PON 01_00117
文摘Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies formaking vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a nonpathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus.
基金A grant from NIH(R01 A1074379) and FIRB project(n.RBLA033WJX) from the Italian Ministry of Research
文摘A major challenge in vaccine design is to identify antigen presentation and delivery systems capable of rapidly stimulating both the humoral and cellular components of the immune system to elicit a strong and sustained immunity against different viral isolates. Approaches to achieve this end involve live attenuated and inactivated virions, viral vectors, DNA, and protein subunits. This review reports the state of current antigen delivery, and focuses on two innovative systems recently established at our labs. These systems are the filamentous bacteriophage fd and an icosahedral scaffold formed by the acyltransferase component(E2 protein) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus.