期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improved Particle Swarm Optimization for Selection of Shield Tunneling Parameter Values 被引量:2
1
作者 Gongyu Hou Zhedong Xu +1 位作者 Xin Liu Cong Jin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期317-337,共21页
This article proposes an exponential adjustment inertia weight immune particle swarm optimization(EAIW-IPSO)to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values.Accordin... This article proposes an exponential adjustment inertia weight immune particle swarm optimization(EAIW-IPSO)to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values.According to the iteration changes and the range of inertia weight in particle swarm optimization algorithm(PSO),the inertia weight is adjusted by the form of exponential function.Meanwhile,the self-regulation mechanism of the immune system is combined with the PSO.12 benchmark functions and the realistic cases of shield tunneling parameter value selection are utilized to demonstrate the feasibility and accuracy of the proposed EAIW-IPSO algorithm.Comparison with other improved PSO indicates that EAIW-IPSO has better performance to solve unimodal and multimodal optimization problems.When solving the selection of shield tunneling parameter values,EAIW-IPSO can provide more accurate and reliable references for the realistic engineering. 展开更多
关键词 INERTIA WEIGHT eaiw-ipso SELF-REGULATION mechanism SHIELD TUNNELING parameter.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部