This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing ima...This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.展开更多
The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear...The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.展开更多
By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the ...By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.展开更多
When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We us...When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.展开更多
In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide ...In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide higher compression ratio than Huffman coding while it reconstructs image without loss compared with the first generation wavelet transform. The experimental results show that the se cond generation wavelet transform can obtain excellent performance in medical image compression coding.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some are...Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.展开更多
To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical mode...To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.展开更多
The amount of image data generated in multimedia applications is ever increasing. The image compression plays vital role in multimedia applications. The ultimate aim of image compression is to reduce storage space wit...The amount of image data generated in multimedia applications is ever increasing. The image compression plays vital role in multimedia applications. The ultimate aim of image compression is to reduce storage space without degrading image quality. Compression is required whenever the data handled is huge they may be required to sent or transmitted and also stored. The New Edge Directed Interpolation (NEDI)-based lifting Discrete Wavelet Transfrom (DWT) scheme with modified Set Partitioning In Hierarchical Trees (MSPIHT) algorithm is proposed in this paper. The NEDI algorithm gives good visual quality image particularly at edges. The main objective of this paper is to be preserving the edges while performing image compression which is a challenging task. The NEDI with lifting DWT has achieved 99.18% energy level in the low frequency ranges which has 1.07% higher than 5/3 Wavelet decomposition and 0.94% higher than traditional DWT. To implement this NEDI with Lifting DWT along with MSPIHT algorithm which gives higher Peak Signal to Noise Ratio (PSNR) value and minimum Mean Square Error (MSE) and hence better image quality. The experimental results proved that the proposed method gives better PSNR value (39.40 dB for rate 0.9 bpp without arithmetic coding) and minimum MSE value is 7.4.展开更多
In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the ...In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.展开更多
Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and...Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and builds a new biorthogonal wavelet construction model with parameters. The model parameters are optimized by using genetic algorithm and adopting energy compaction as the optimization object function. In addition, in order to resolve the computation complexity problem of online construction, according to the image classification rule proposed in this paper we construct wavelets for different classes of images and implement the fast adaptive wavelet selection algorithm (FAWS). Experimental results show wavelet bases of FAWS gain better compression performance than Daubechies9/7.展开更多
In Order to reduce the noise in the images and the physical storage, the wavelet-based image compression technique was applied to PIV processing in this paper. To study the effect of the wavelet bases, the standard PI...In Order to reduce the noise in the images and the physical storage, the wavelet-based image compression technique was applied to PIV processing in this paper. To study the effect of the wavelet bases, the standard PIV images were compressed by some known wavelet families, Daubechies, Coifman and Baylkin families with various compression ratios. It was found that a higher order wavelet base provided good compression performance for compressing PIV images. The error analysis of velocity field obtained indicated that the high compression ratio, even up to 64.1, can be realized without losing significant flow information in PIV processing. The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance. A reduced number of erroneous vectors can be realized by varying compression ratio. It can say that the wavelet image compression technique is very effective in PIV system.展开更多
The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. ...The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The proposed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the proposed image compression not only is more efficient but also has better compression ratio.展开更多
Based on the mechanisms underlying the performance of fractal and Discrete Wavelet Transform(DWT), one method using fractal-based self-quantization coding way to code different subband coefficients of DWT is presented...Based on the mechanisms underlying the performance of fractal and Discrete Wavelet Transform(DWT), one method using fractal-based self-quantization coding way to code different subband coefficients of DWT is presented. Within this method finer coefficients are fractal encoded according to the successive coarser ones. Self-similarities inherent between parent and their children at the same spatial location of the adjacent scales of similar orientation are exploited to predict variation of information across wavelet scales. On the other hand, with respect to Human Visual System(HVS) model, we assign different error thresholds to different decomposition scales, and different shape of range blocks to different orientations of the same scale, by which the perceptually lossless high compression ratio can be achieved and the matching processing can be quickened dramatically.展开更多
A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction ...A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image based on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.展开更多
We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous...We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.展开更多
Aiming at shortage of the SPIHT algorithm, an improved image compression algorithm is proposed, in order to overcome the shortcomings of decoding image quality and coding time, LS9/7 lifting wavelet transform is adopt...Aiming at shortage of the SPIHT algorithm, an improved image compression algorithm is proposed, in order to overcome the shortcomings of decoding image quality and coding time, LS9/7 lifting wavelet transform is adopted. According to the characteristics of the human visual system (HVS), the scanning mode and the method to determine the threshold of algorithm are changed to improve the quality of reconstruction image. On the question of repeating scan of SPIHT algorithm, using maximum list thought, greatly reduce the computation and save operating time. The experimental results have proved that the improved algorithm of image decoding time and the quality of reconstruction images are better than the original algorithm , especially in the case of low bit rate.展开更多
Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of moving image files to protect their copyrights. However, in order to detect the water marking sufficientl...Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of moving image files to protect their copyrights. However, in order to detect the water marking sufficiently after heavy compression, it is necessary to insert the watermarking with strong intensity into a moving image, and this results in visible deterioration of the moving image. We previously proposed an authentication method using a discrete wavelet transform for a digital static image file. In contrast to digital watermarking, no additional information is inserted into the original static image in the previously proposed method, and the image is authenticated by features extracted by the wavelet transform and characteristic coding. In the present study, we developed an authentication method for a moving image by using the previously proposed method for astatic image and a newly proposed method for selecting several frames in the moving image. No additional information is inserted into the original moving image by the newly proposed method or into the original static image by the previously proposed method. The experimental results show that the proposed method has a high tolerance of authentication to both compressions and vicious attacks.展开更多
Starting with a fractal-based image-compression algorithm based on wavelet transformation for hyperspectral images, the authors were able to obtain more spectral bands with the help of of hyperspectral remote sensing....Starting with a fractal-based image-compression algorithm based on wavelet transformation for hyperspectral images, the authors were able to obtain more spectral bands with the help of of hyperspectral remote sensing. Because large amounts of data and limited bandwidth complicate the storage and transmission of data measured by TB-level bits, it is important to compress image data acquired by hyperspectral sensors such as MODIS, PHI, and OMIS; otherwise, conventional lossless compression algorithms cannot reach adequate compression ratios. Other loss-compression methods can reach high compression ratios but lack good image fidelity, especially for hyperspectral image data. Among the third generation of image compression algorithms, fractal image compression based on wavelet transformation is superior to traditional compression methods,because it has high compression ratios and good image fidelity, and requires less computing time. To keep the spectral dimension invariable, the authors compared the results of two compression algorithms based on the storage-file structures of BSQ and of BIP, and improved the HV and Quadtree partitioning and domain-range matching algorithms in order to accelerate their encode/decode efficiency. The authors' Hyperspectral Image Process and Analysis System (HIPAS) software used a VC++6.0 integrated development environment (IDE), with which good experimental results were obtained. Possible modifications of the algorithm and limitations of the method are also discussed.展开更多
基金funded by the University of Jeddah,Saudi Arabia,under Grant No.UJ-20-043-DR。
文摘This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.
基金Project 60571049 supported by the National Natural Science Foundation of China
文摘By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.
文摘When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.
基金Supported by the National Natural Science Foundation of China!( 6 9875 0 0 9)
文摘In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide higher compression ratio than Huffman coding while it reconstructs image without loss compared with the first generation wavelet transform. The experimental results show that the se cond generation wavelet transform can obtain excellent performance in medical image compression coding.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
基金supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No.2008AA04A107)supported by a grant from the Major Programs of Guangdong-Hongkong in the Key Domain (No.2009498B21)
文摘Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.
文摘To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.
文摘The amount of image data generated in multimedia applications is ever increasing. The image compression plays vital role in multimedia applications. The ultimate aim of image compression is to reduce storage space without degrading image quality. Compression is required whenever the data handled is huge they may be required to sent or transmitted and also stored. The New Edge Directed Interpolation (NEDI)-based lifting Discrete Wavelet Transfrom (DWT) scheme with modified Set Partitioning In Hierarchical Trees (MSPIHT) algorithm is proposed in this paper. The NEDI algorithm gives good visual quality image particularly at edges. The main objective of this paper is to be preserving the edges while performing image compression which is a challenging task. The NEDI with lifting DWT has achieved 99.18% energy level in the low frequency ranges which has 1.07% higher than 5/3 Wavelet decomposition and 0.94% higher than traditional DWT. To implement this NEDI with Lifting DWT along with MSPIHT algorithm which gives higher Peak Signal to Noise Ratio (PSNR) value and minimum Mean Square Error (MSE) and hence better image quality. The experimental results proved that the proposed method gives better PSNR value (39.40 dB for rate 0.9 bpp without arithmetic coding) and minimum MSE value is 7.4.
文摘In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.
基金Supported bY the National Natural Science Foundation of China under Grant No.60573150National Defense Basic Research Foundation,the Program for New Century Excellent Talents in Universities and ERIPKU.
文摘Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and builds a new biorthogonal wavelet construction model with parameters. The model parameters are optimized by using genetic algorithm and adopting energy compaction as the optimization object function. In addition, in order to resolve the computation complexity problem of online construction, according to the image classification rule proposed in this paper we construct wavelets for different classes of images and implement the fast adaptive wavelet selection algorithm (FAWS). Experimental results show wavelet bases of FAWS gain better compression performance than Daubechies9/7.
文摘In Order to reduce the noise in the images and the physical storage, the wavelet-based image compression technique was applied to PIV processing in this paper. To study the effect of the wavelet bases, the standard PIV images were compressed by some known wavelet families, Daubechies, Coifman and Baylkin families with various compression ratios. It was found that a higher order wavelet base provided good compression performance for compressing PIV images. The error analysis of velocity field obtained indicated that the high compression ratio, even up to 64.1, can be realized without losing significant flow information in PIV processing. The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance. A reduced number of erroneous vectors can be realized by varying compression ratio. It can say that the wavelet image compression technique is very effective in PIV system.
文摘The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The proposed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the proposed image compression not only is more efficient but also has better compression ratio.
文摘Based on the mechanisms underlying the performance of fractal and Discrete Wavelet Transform(DWT), one method using fractal-based self-quantization coding way to code different subband coefficients of DWT is presented. Within this method finer coefficients are fractal encoded according to the successive coarser ones. Self-similarities inherent between parent and their children at the same spatial location of the adjacent scales of similar orientation are exploited to predict variation of information across wavelet scales. On the other hand, with respect to Human Visual System(HVS) model, we assign different error thresholds to different decomposition scales, and different shape of range blocks to different orientations of the same scale, by which the perceptually lossless high compression ratio can be achieved and the matching processing can be quickened dramatically.
文摘A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image based on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.
基金the Natural Science Foundation of China (No. 60472037).
文摘We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.
文摘Aiming at shortage of the SPIHT algorithm, an improved image compression algorithm is proposed, in order to overcome the shortcomings of decoding image quality and coding time, LS9/7 lifting wavelet transform is adopted. According to the characteristics of the human visual system (HVS), the scanning mode and the method to determine the threshold of algorithm are changed to improve the quality of reconstruction image. On the question of repeating scan of SPIHT algorithm, using maximum list thought, greatly reduce the computation and save operating time. The experimental results have proved that the improved algorithm of image decoding time and the quality of reconstruction images are better than the original algorithm , especially in the case of low bit rate.
文摘Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of moving image files to protect their copyrights. However, in order to detect the water marking sufficiently after heavy compression, it is necessary to insert the watermarking with strong intensity into a moving image, and this results in visible deterioration of the moving image. We previously proposed an authentication method using a discrete wavelet transform for a digital static image file. In contrast to digital watermarking, no additional information is inserted into the original static image in the previously proposed method, and the image is authenticated by features extracted by the wavelet transform and characteristic coding. In the present study, we developed an authentication method for a moving image by using the previously proposed method for astatic image and a newly proposed method for selecting several frames in the moving image. No additional information is inserted into the original moving image by the newly proposed method or into the original static image by the previously proposed method. The experimental results show that the proposed method has a high tolerance of authentication to both compressions and vicious attacks.
文摘Starting with a fractal-based image-compression algorithm based on wavelet transformation for hyperspectral images, the authors were able to obtain more spectral bands with the help of of hyperspectral remote sensing. Because large amounts of data and limited bandwidth complicate the storage and transmission of data measured by TB-level bits, it is important to compress image data acquired by hyperspectral sensors such as MODIS, PHI, and OMIS; otherwise, conventional lossless compression algorithms cannot reach adequate compression ratios. Other loss-compression methods can reach high compression ratios but lack good image fidelity, especially for hyperspectral image data. Among the third generation of image compression algorithms, fractal image compression based on wavelet transformation is superior to traditional compression methods,because it has high compression ratios and good image fidelity, and requires less computing time. To keep the spectral dimension invariable, the authors compared the results of two compression algorithms based on the storage-file structures of BSQ and of BIP, and improved the HV and Quadtree partitioning and domain-range matching algorithms in order to accelerate their encode/decode efficiency. The authors' Hyperspectral Image Process and Analysis System (HIPAS) software used a VC++6.0 integrated development environment (IDE), with which good experimental results were obtained. Possible modifications of the algorithm and limitations of the method are also discussed.