利用2015-2018年乌鲁木齐机场航空例行天气报告(METAR报)、ECMWF(European Centre for Medium-Range Weather Forecasting)细网格数值预报产品对影响能见度的主要因子进行分析,提取与低能见度相关性高的物理量作为预报因子,采用SVM方法...利用2015-2018年乌鲁木齐机场航空例行天气报告(METAR报)、ECMWF(European Centre for Medium-Range Weather Forecasting)细网格数值预报产品对影响能见度的主要因子进行分析,提取与低能见度相关性高的物理量作为预报因子,采用SVM方法,分别基于Poly、RBF核函数建立乌鲁木齐机场未来21 h能见度预报模型。结果表明:(1)基于预报因子区间分类的SVM模型物理意义明确,试验结果较好;以RBF为函数建立的SVM模型(SVM-RBF)预报能力更好,其训练样本预测的TS评分0.84,准确率89.20%。(2)SVM-RBF模型的检验样本中,预报准确样本的预报误差整体偏小;在漏报样本中则有能见度越低、预报误差越大的特点,模型的振荡性明显。(3)结合NCEP/NCAR再分析资料研究SVM-RBF模型对天气过程的预报表现,发现模型对于特定天气形势下引发的低能见度天气,预报误差较小且预报提前量较大。展开更多
文摘利用2015-2018年乌鲁木齐机场航空例行天气报告(METAR报)、ECMWF(European Centre for Medium-Range Weather Forecasting)细网格数值预报产品对影响能见度的主要因子进行分析,提取与低能见度相关性高的物理量作为预报因子,采用SVM方法,分别基于Poly、RBF核函数建立乌鲁木齐机场未来21 h能见度预报模型。结果表明:(1)基于预报因子区间分类的SVM模型物理意义明确,试验结果较好;以RBF为函数建立的SVM模型(SVM-RBF)预报能力更好,其训练样本预测的TS评分0.84,准确率89.20%。(2)SVM-RBF模型的检验样本中,预报准确样本的预报误差整体偏小;在漏报样本中则有能见度越低、预报误差越大的特点,模型的振荡性明显。(3)结合NCEP/NCAR再分析资料研究SVM-RBF模型对天气过程的预报表现,发现模型对于特定天气形势下引发的低能见度天气,预报误差较小且预报提前量较大。