期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv7的木材缺陷检测模型Wood-Net的研究
被引量:
1
1
作者
王正
江莺
+3 位作者
严飞
孙佑鹏
张园
张柳磊
《林业工程学报》
CSCD
北大核心
2024年第1期132-140,共9页
为改善利用人工方式识别木材缺陷存在的效率低、人工成本高的问题,同时实现在木材加工过程中使用新兴方式对不同的缺陷进行快速准确检测以提高木材利用率,针对现有的目标检测网络在木材缺陷检测方面存在诸如检测精度低、报错率高以及识...
为改善利用人工方式识别木材缺陷存在的效率低、人工成本高的问题,同时实现在木材加工过程中使用新兴方式对不同的缺陷进行快速准确检测以提高木材利用率,针对现有的目标检测网络在木材缺陷检测方面存在诸如检测精度低、报错率高以及识别种类少等局限,设计了用于木材缺陷检测的深度学习网络Wood-Net。Wood-Net将注意力机制ECA(efficient channel attention module)引入YOLOv7的主干网络,以便更好地区分木材缺陷之间的细微差别;将ECA与Res2Net结合后形成ECA-Res2Net模块,ECA-Res2Net模块克服了单纯的Res2Net跨通道交流能力不足的问题,增强了网络对更细粒度特征的提取能力;将ECA-Res2Net模块与SPPCSPC(spatial pyramid pooling and channel spatial pyramid convolution)并联形成ResSPPCSPC模块,增加了描述图像本身特征数量的能力,由此构成新方法Wood-Net。本研究将准确度、召回值、mAP@0.5以及mAP@0.5∶mAP@0.95 4个数值作为系统性能的评价指标。利用自建数据集训练Wood-Net,得到试验数据。试验结果表明:Wood-Net模型比基准模型YOLOv7在木材优选上精确率提高了4.52%,mAP@0.5∶mAP@0.95提高了6.62%;比基准模型YOLOv5s在木材优选上精确率提高了6.79%,mAP@0.5∶mAP@0.95提高了5.67%。ECA注意力机制能够有效提升E-ELAN的通道间信息交互能力;Res2Net模块具有很强的细粒度特征提取能力,在网络中引入Res2Net模块后,网络各项性能指标收敛速度快,在Res2Net中加入ECA后能够使单纯的Res2Net考虑多通道特征之间的关系,完成信息融合,提高检测性能。
展开更多
关键词
Wood-Net
木材优选
eca-res
2Net
ECA
Res2Net
下载PDF
职称材料
基于改进SlowFast模型的设施黄瓜农事行为识别方法
2
作者
何峰
吴华瑞
+1 位作者
史扬明
朱华吉
《智慧农业(中英文)》
CSCD
2024年第3期118-127,共10页
[目的/意义]农事行为活动识别对设施蔬菜生产精准化调控有着重要意义,在一定程度上可以通过查看农事操作的时间、操作过程是否合理来减少因农事行为不当导致产量下降。为了解决农事行为识别方法中由于黄瓜叶片和设施遮挡导致识别准确率...
[目的/意义]农事行为活动识别对设施蔬菜生产精准化调控有着重要意义,在一定程度上可以通过查看农事操作的时间、操作过程是否合理来减少因农事行为不当导致产量下降。为了解决农事行为识别方法中由于黄瓜叶片和设施遮挡导致识别准确率不高的问题,提出一种名为SlowFast-SMC-ECA (SlowFast-Spatio-Temporal Excitation、Channel Excitation、Motion Excitation-Efficient Channel Attention)的农事活动行为识别算法。[方法]该算法主要基于SlowFast模型,通过改进Fast Pathway和Slow Pathway中的网络结构来提高对于农事活动中手部动作特征和关键特征的提取能力。在Fast Pathway中,引入多路径激励残差网络的概念,通过在信道之间插入卷积操作来增强它们在时域上的相互关联性,从而更好地捕捉快速运动信息的细微时间变化。在Slow Pathway中,将传统的Residual Block替换为ECA-Res结构,以提高对通道信息的捕获能力。这两项改进有效地加强了通道之间的联系,提升了特征之间的语义信息传递,进而显著提升了农事行为识别的准确率。此外,为了解决数据集中类别不均衡的问题,设计了平衡损失函数(Smoothing Loss),通过引入正则化系数,平衡损失函数可以有效地处理数据集中的类别不均衡情况,提高模型在各个类别上的表现。[结果和讨论]改进的SlowFast-SMC-ECA模型在农事行为识别中表现出良好的性能,各类行为的平均识别精度达到80.47%,相较于原始的SlowFast模型有约3.5%的提升。[结论]本研究在农事行为识别中展现出良好的性能。这对农业生产的智能化管理和决策具有重要意义。
展开更多
关键词
农事活动行为
SlowFast模型
多路径激励残差网络
eca-res
平衡损失函数
下载PDF
职称材料
题名
基于YOLOv7的木材缺陷检测模型Wood-Net的研究
被引量:
1
1
作者
王正
江莺
严飞
孙佑鹏
张园
张柳磊
机构
南京林业大学机械电子工程学院
出处
《林业工程学报》
CSCD
北大核心
2024年第1期132-140,共9页
基金
江苏省创新支撑计划(BZ2022037)。
文摘
为改善利用人工方式识别木材缺陷存在的效率低、人工成本高的问题,同时实现在木材加工过程中使用新兴方式对不同的缺陷进行快速准确检测以提高木材利用率,针对现有的目标检测网络在木材缺陷检测方面存在诸如检测精度低、报错率高以及识别种类少等局限,设计了用于木材缺陷检测的深度学习网络Wood-Net。Wood-Net将注意力机制ECA(efficient channel attention module)引入YOLOv7的主干网络,以便更好地区分木材缺陷之间的细微差别;将ECA与Res2Net结合后形成ECA-Res2Net模块,ECA-Res2Net模块克服了单纯的Res2Net跨通道交流能力不足的问题,增强了网络对更细粒度特征的提取能力;将ECA-Res2Net模块与SPPCSPC(spatial pyramid pooling and channel spatial pyramid convolution)并联形成ResSPPCSPC模块,增加了描述图像本身特征数量的能力,由此构成新方法Wood-Net。本研究将准确度、召回值、mAP@0.5以及mAP@0.5∶mAP@0.95 4个数值作为系统性能的评价指标。利用自建数据集训练Wood-Net,得到试验数据。试验结果表明:Wood-Net模型比基准模型YOLOv7在木材优选上精确率提高了4.52%,mAP@0.5∶mAP@0.95提高了6.62%;比基准模型YOLOv5s在木材优选上精确率提高了6.79%,mAP@0.5∶mAP@0.95提高了5.67%。ECA注意力机制能够有效提升E-ELAN的通道间信息交互能力;Res2Net模块具有很强的细粒度特征提取能力,在网络中引入Res2Net模块后,网络各项性能指标收敛速度快,在Res2Net中加入ECA后能够使单纯的Res2Net考虑多通道特征之间的关系,完成信息融合,提高检测性能。
关键词
Wood-Net
木材优选
eca-res
2Net
ECA
Res2Net
Keywords
Wood-Net
wood optimization
eca-res
2Net
ECA
Res2Net
分类号
S781.61 [农业科学—木材科学与技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于改进SlowFast模型的设施黄瓜农事行为识别方法
2
作者
何峰
吴华瑞
史扬明
朱华吉
机构
江苏大学计算机科学与通信工程学院
国家农业信息化工程技术研究中心
北京市农林科学院信息技术研究中心
农业农村部数字乡村技术重点实验室
出处
《智慧农业(中英文)》
CSCD
2024年第3期118-127,共10页
基金
中央引导地方科技发展资金项目(2023ZY1-CGZY-01)
财政部和农业农村部:国家现代农业产业技术体系资助(CARS-23-D07)。
文摘
[目的/意义]农事行为活动识别对设施蔬菜生产精准化调控有着重要意义,在一定程度上可以通过查看农事操作的时间、操作过程是否合理来减少因农事行为不当导致产量下降。为了解决农事行为识别方法中由于黄瓜叶片和设施遮挡导致识别准确率不高的问题,提出一种名为SlowFast-SMC-ECA (SlowFast-Spatio-Temporal Excitation、Channel Excitation、Motion Excitation-Efficient Channel Attention)的农事活动行为识别算法。[方法]该算法主要基于SlowFast模型,通过改进Fast Pathway和Slow Pathway中的网络结构来提高对于农事活动中手部动作特征和关键特征的提取能力。在Fast Pathway中,引入多路径激励残差网络的概念,通过在信道之间插入卷积操作来增强它们在时域上的相互关联性,从而更好地捕捉快速运动信息的细微时间变化。在Slow Pathway中,将传统的Residual Block替换为ECA-Res结构,以提高对通道信息的捕获能力。这两项改进有效地加强了通道之间的联系,提升了特征之间的语义信息传递,进而显著提升了农事行为识别的准确率。此外,为了解决数据集中类别不均衡的问题,设计了平衡损失函数(Smoothing Loss),通过引入正则化系数,平衡损失函数可以有效地处理数据集中的类别不均衡情况,提高模型在各个类别上的表现。[结果和讨论]改进的SlowFast-SMC-ECA模型在农事行为识别中表现出良好的性能,各类行为的平均识别精度达到80.47%,相较于原始的SlowFast模型有约3.5%的提升。[结论]本研究在农事行为识别中展现出良好的性能。这对农业生产的智能化管理和决策具有重要意义。
关键词
农事活动行为
SlowFast模型
多路径激励残差网络
eca-res
平衡损失函数
Keywords
farming activity behaviour
SlowFast model
multi-path incentive residual network
eca-res
equilibrium loss function
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv7的木材缺陷检测模型Wood-Net的研究
王正
江莺
严飞
孙佑鹏
张园
张柳磊
《林业工程学报》
CSCD
北大核心
2024
1
下载PDF
职称材料
2
基于改进SlowFast模型的设施黄瓜农事行为识别方法
何峰
吴华瑞
史扬明
朱华吉
《智慧农业(中英文)》
CSCD
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部