Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for ...Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.展开更多
Although the existing group signature schemes from lattice have been optimized for efficiency,the signing abilities of eachmember in the group are relatively single.It may not be suitable for complex applications.Insp...Although the existing group signature schemes from lattice have been optimized for efficiency,the signing abilities of eachmember in the group are relatively single.It may not be suitable for complex applications.Inspired by the pioneering work of Bellare and Fuchsbauer,we present a primitive called policy-based group signature.In policy-based group signatures,group members can on behalf of the group to sign documents that meet their own policies,and the generated signatures will not leak the identity and policies of the signer.Moreover,the group administrator is allowed to reveal the identity of signer when a controversy occurs.Through the analysis of application scenarios,we concluded that the policy-based group signature needs to meet two essential security properties:simulatability and traceability.And we construct a scheme of policy-based group signature from lattice through techniques such as commitment,zero-knowledge proof,rejection sampling.The security of our scheme is proved to be reduced to the module short integer solution(MSIS)and module learning with errors(MLWE)hard assumptions.Furthermore,we make a performance comparison between our scheme and three lattice-based group signature schemes.The result shows that our scheme has more advantages in storage overhead and the sizes of key and signature are decreased roughly by 83.13%,46.01%,respectively,compared with other schemes.展开更多
基金supported by the National High-Tech Research and Development Plan of China under Grant Nos.863-317-01- 04-99, 2009AA01Z122 (863)the Natural Science Foundation of Shenyang City of China under Grant No. F10-205-1-12
文摘Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.
基金supported by the National Natural Science Foundation of China(61802117)Support Plan of Scientific and Technological Innovation Team in Universities of Henan Province(20IRTSTHN013)the Youth Backbone Teacher Support Program of Henan Polytechnic University under Grant(2018XQG-10).
文摘Although the existing group signature schemes from lattice have been optimized for efficiency,the signing abilities of eachmember in the group are relatively single.It may not be suitable for complex applications.Inspired by the pioneering work of Bellare and Fuchsbauer,we present a primitive called policy-based group signature.In policy-based group signatures,group members can on behalf of the group to sign documents that meet their own policies,and the generated signatures will not leak the identity and policies of the signer.Moreover,the group administrator is allowed to reveal the identity of signer when a controversy occurs.Through the analysis of application scenarios,we concluded that the policy-based group signature needs to meet two essential security properties:simulatability and traceability.And we construct a scheme of policy-based group signature from lattice through techniques such as commitment,zero-knowledge proof,rejection sampling.The security of our scheme is proved to be reduced to the module short integer solution(MSIS)and module learning with errors(MLWE)hard assumptions.Furthermore,we make a performance comparison between our scheme and three lattice-based group signature schemes.The result shows that our scheme has more advantages in storage overhead and the sizes of key and signature are decreased roughly by 83.13%,46.01%,respectively,compared with other schemes.