The objective of this paper is to develop an efficient P wave detection method in electrocardiogram (ECG) using the local entropy criterion (EC) and wavelet transform (WT) modulus maxima. The detection of P wave relat...The objective of this paper is to develop an efficient P wave detection method in electrocardiogram (ECG) using the local entropy criterion (EC) and wavelet transform (WT) modulus maxima. The detection of P wave relates to the diagnosis of many heart diseases and it is also a difficult point during the ECG signal detection. Determining the position of a P-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. In a first step, QRS complexes are detected using the pan-Tompkins method. Then, we look for the best position of the analysis window and the value of the most appropriate width to the P wave. Finally, the determination of P wave peaks, as well as their onsets and offsets. The method has been validated using ECG-recordings with a wide variety of P-wave morphologies from MIT-BIH Arrhythmia and QT database. The P-wave method obtains a sensitivity of 99.87% and a positive predictivity of 98.04% over the MIT-BIH Arrhythmia, while for the QT, sensitivity and predictivity over 99.8% are attained.展开更多
文摘The objective of this paper is to develop an efficient P wave detection method in electrocardiogram (ECG) using the local entropy criterion (EC) and wavelet transform (WT) modulus maxima. The detection of P wave relates to the diagnosis of many heart diseases and it is also a difficult point during the ECG signal detection. Determining the position of a P-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. In a first step, QRS complexes are detected using the pan-Tompkins method. Then, we look for the best position of the analysis window and the value of the most appropriate width to the P wave. Finally, the determination of P wave peaks, as well as their onsets and offsets. The method has been validated using ECG-recordings with a wide variety of P-wave morphologies from MIT-BIH Arrhythmia and QT database. The P-wave method obtains a sensitivity of 99.87% and a positive predictivity of 98.04% over the MIT-BIH Arrhythmia, while for the QT, sensitivity and predictivity over 99.8% are attained.