期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals 被引量:2
1
作者 Nimmala Mangathayaru Padmaja Rani +4 位作者 Vinjamuri Janaki Kalyanapu Srinivas B.Mathura Bai G.Sai Mohan BLalith Bharadwaj 《Computers, Materials & Continua》 SCIE EI 2021年第11期2425-2443,共19页
Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine.Detecting arrhythmia from ECG signals is considered a standard approach and hence,automating this... Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine.Detecting arrhythmia from ECG signals is considered a standard approach and hence,automating this process would aid the diagnosis by providing fast,costefficient,and accurate solutions at scale.This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography(ECG)signals causing arrhythmia.In this era of applied intelligence,automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions.In this research,our contributions are two-fold.Firstly,the Dual-Tree Complex Wavelet Transform(DT-CWT)method is implied to overhaul shift-invariance and aids signal reconstruction to extract significant features.Next,A neural attention mechanism is implied to capture temporal patterns from the extracted features of the ECG signal to discriminate distinct classes of arrhythmia and is trained end-to-end with the finest parameters.To ensure that the model’s generalizability,a set of five traintest variants are implied.The proposed model attains the highest accuracy of 98.5%for classifying 8 variants of arrhythmia on the MIT-BIH dataset.To test the resilience of the model,the unseen(test)samples are increased by 5x and the deviation in accuracy score and MSE was 0.12%and 0.1%respectively.Further,to assess the diagnostic model performance,AUC-ROC curves are plotted.At every test level,the proposed model is capable of generalizing new samples and leverages the advantage to develop a real-world application.As a note,this research is the first attempt to provide neural attention in arrhythmia classification using MIT-BIH ECG signals data with state-of-the-art performance. 展开更多
关键词 Arrhythmia classification arrhythmia detection MIT-BIH dataset dual-tree complex wave transform ecg classification neural attention neural networks deep learning
下载PDF
Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network
2
作者 董昊 郑超 +1 位作者 毛新生 钱大宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第1期55-69,共15页
A novel structure based on channel-wise attention mechanism is presented in this paper.With the proposed structure embedded,an efficient classification model that accepts multi-lead electrocardiogram(ECG)as input is c... A novel structure based on channel-wise attention mechanism is presented in this paper.With the proposed structure embedded,an efficient classification model that accepts multi-lead electrocardiogram(ECG)as input is constructed.One-dimensional convolutional neural networks(CNNs)have proven to be effective in pervasive classification tasks,enabling the automatic extraction of features while classifying targets.We implement the residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map during the training process.An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task on the two out of five ECG classes.The data in the MIT-BIH arrhythmia database is used and a series of control experiments is conducted.Utilizing both leads of the ECG signals as input to the neural network classifier can achieve better classification results than those from using single channel inputs in different application scenarios.Models embedded with the channel-wise attention structure always achieve better scores on sensitivity and precision than the plain Resnet models.The proposed model exceeds most of the state-of-the-art models in ventricular ectopic beats(VEB)classification performance and achieves competitive scores for supraventricular ectopic beats(SVEB).Adopting more lead ECG signals as input can increase the dimensions of the input feature maps,helping to improve both the performance and generalization of the network model.Due to its end-to-end characteristics,and the extensible intrinsic for multi-lead heart diseases diagnosing,the proposed model can be used for the realtime ECG tracking of ECG waveforms for Holter or wearable devices. 展开更多
关键词 attention model convolutional neural network(CNN) ecg classification ARRHYTHMIA
原文传递
Research on ECG classification based on transfer learning
3
作者 Jiang Fan Chen Jiajun +1 位作者 Gao Youjun Sun Changyin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第6期83-96,共14页
Concerning current deep learning-based electrocardiograph(ECG) classification methods, there exists domain discrepancy between the data distributions of the training set and the test set in the inter-patient paradigm.... Concerning current deep learning-based electrocardiograph(ECG) classification methods, there exists domain discrepancy between the data distributions of the training set and the test set in the inter-patient paradigm. To reduce the negative effect of domain discrepancy on the classification accuracy of ECG signals, this paper incorporates transfer learning into the ECG classification, which aims at applying the knowledge learned from the training set to the test set. Specifically, this paper first develops a deep domain adaptation network(DAN) for ECG classification based on the convolutional neural network(CNN). Then, the network is pre-trained with training set data obtained from the famous Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH) ECG arrhythmia database. On this basis, by minimizing the multi-kernel maximum mean discrepancy(MK-MMD) between the data distributions of the training set and the test set, the pre-trained network is adjusted to learn transferable feature representations. Finally, with the low-density separation of unlabeled target data, the feature representations are more transferable. The extensive experimental results show that the proposed domain adaptation method has reached a 7.58% improvement in overall classification accuracy on the test set, and achieves competitive performance with other state-of-the-arts. 展开更多
关键词 electrocardiograph(ecg)classification transfer learning domain adaptation convolutional neural network(CNN)
原文传递
ECG beat classification using particle swarm optimization and support vector machine 被引量:1
4
作者 Ali KHAZAEE A. E. ZADEH 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第2期217-231,共15页
In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three tim... In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three timing inter- val features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using parti- cle swarm optimization (PSO). These parameters are: Gaus- sian radial basis function (GRBF) kernel parameter o- and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid par- ticle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved perfor- mance over the SVM which has constant and manually ex- tracted parameter. 展开更多
关键词 ecg arrhythmia classification SVM PSO op-timization PSD
原文传递
Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms
5
作者 Maie Aboghazalah Passent El-kafrawy +3 位作者 Abdelmoty M.Ahmed Rasha Elnemr Belgacem Bouallegue Ayman El-sayed 《Computers, Materials & Continua》 SCIE EI 2024年第6期3855-3875,共21页
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s... Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments. 展开更多
关键词 ecg extraction ecg leads time series prior knowledge and arrhythmia chaos theory QRS complex analysis machine learning ecg classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部