Electrocardiogram(ECG)is widely used to detect arrhythmia.Atrial fibrillation,atrioventricular block,premature beats,etc.can all be diagnosed by ECG.When the distribution of training data and test data is inconsistent...Electrocardiogram(ECG)is widely used to detect arrhythmia.Atrial fibrillation,atrioventricular block,premature beats,etc.can all be diagnosed by ECG.When the distribution of training data and test data is inconsistent,the accuracy of the model will be affected.This phenomenon is called dataset shift.In the real-world heartbeat classification system,the heartbeat of the training set and test set often comes from patients of different ages and genders,so there are differences in the distribution of data sets.The main challenge in applying machine learning algorithms to clinical AI systems is dataset shift.Test-time adaptation(TTA)aims to adapt a pre-trained model from the source domain(SD)to the target domain(TD)without using any SD data or TD labels,thereby reducing model performance degradation due to domain differences.We propose a method based on multimodal image fusion and continual test-time adaptation(FCTA)for accurate and efficient heartbeat classification.First,the original ECG data is converted into a three-channel color image through a multimodal image fusion framework.The impact of class imbalance on network performance is overcome using a batch weight loss function,and then the pretrained source model is adapted to the TD using a continual test-time adaptation(CTA)method.Although our method is very simple,compared with other domain adaptation methods,it can significantly improve model performance on the test set and reduce the impact caused by the difference in domain distribution.展开更多
文摘Electrocardiogram(ECG)is widely used to detect arrhythmia.Atrial fibrillation,atrioventricular block,premature beats,etc.can all be diagnosed by ECG.When the distribution of training data and test data is inconsistent,the accuracy of the model will be affected.This phenomenon is called dataset shift.In the real-world heartbeat classification system,the heartbeat of the training set and test set often comes from patients of different ages and genders,so there are differences in the distribution of data sets.The main challenge in applying machine learning algorithms to clinical AI systems is dataset shift.Test-time adaptation(TTA)aims to adapt a pre-trained model from the source domain(SD)to the target domain(TD)without using any SD data or TD labels,thereby reducing model performance degradation due to domain differences.We propose a method based on multimodal image fusion and continual test-time adaptation(FCTA)for accurate and efficient heartbeat classification.First,the original ECG data is converted into a three-channel color image through a multimodal image fusion framework.The impact of class imbalance on network performance is overcome using a batch weight loss function,and then the pretrained source model is adapted to the TD using a continual test-time adaptation(CTA)method.Although our method is very simple,compared with other domain adaptation methods,it can significantly improve model performance on the test set and reduce the impact caused by the difference in domain distribution.