期刊文献+
共找到1,305篇文章
< 1 2 66 >
每页显示 20 50 100
林业纳入碳市场配额管理的综合减排效果——基于4ECGE模型仿真研究 被引量:3
1
作者 石柳 刘若斯 秦小珊 《中南林业科技大学学报(社会科学版)》 2020年第6期39-49,共11页
通过构建一个同时包含能源消费、经济增长、碳排放和森林碳汇的4ECGE模型,在全行业参与、完全拍卖的理想碳市场中,模拟了将林业纳入碳市场配额管理这种碳排放权交易机制设计(一定比例的人工林碳汇纳入碳市场配额管理,同时对天然林碳汇... 通过构建一个同时包含能源消费、经济增长、碳排放和森林碳汇的4ECGE模型,在全行业参与、完全拍卖的理想碳市场中,模拟了将林业纳入碳市场配额管理这种碳排放权交易机制设计(一定比例的人工林碳汇纳入碳市场配额管理,同时对天然林碳汇给予一次性补偿)的综合减排效果。研究发现,与直接减排情景相比,林业纳入碳市场配额管理可以降低低碳政策对GDP、各行业生产及国际竞争力的负面影响,有助于促使各行业更多地采用低碳能源代替碳密集型能源、低成本实现减排目标,并实现森林蓄积量、森林碳汇和森林碳储量的持续稳定增长。通过比较相同林业碳汇纳入比例下外延边际效应和内涵边际效应,发现提高森林质量对森林增长、碳汇交易量和交易额的影响大于单纯依靠植树造林扩大林地面积。因此,将林业纳入碳排放权交易市场配额管理可以同时实现节能、降碳、增汇目标,并与经济发展良性互动,这为构建纳入林业行业的全国统一碳交易市场提供了重要参考依据。 展开更多
关键词 林业碳汇 配额管理 综合减排 4ecge模型
下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
2
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ECG) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
下载PDF
基于深度学习的ECG信号分类与诊断
3
作者 张占 何朗 +3 位作者 张金鹏 王涛 陈为满 娄文璐 《生物医学工程与临床》 CAS 2024年第3期431-437,共7页
心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及... 心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及时更新等未能解决的问题。因此,笔者首先对近10年来基于机器学习的ECG信号分类从波形形态分类、疾病诊断分类和纯粹的机器学习分类研究进行了回顾与综述,总结出了目前的研究遇到的困境,最后对未来面临的问题进行展望。深入学习模型在现实应用中仍存在一些挑战,未来的研究将进一步探索在芯片中实现机器学习模型的便携性和成本效益的硬件解决方案。此外,机器学习算法应寻求最佳的计算开销平衡,并重视在现实世界环境中的应用。在未来研究中,ECG应多进行临床试验,以评估机器学习模型在处理实际生物医学信号时的有效性和可行性,同时构造性价比高的深度学习模型,以帮助医学专家进行精确和及时的预测和诊断。 展开更多
关键词 ECG 机器学习 深度学习 心血管疾病
下载PDF
基于扩散模型的心电信号去噪方法
4
作者 罗成思 张凯旋 +1 位作者 Abduljabbar Salem Ba-Mahel 饶妮妮 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第6期940-951,共12页
传统和深度学习的去噪技术在处理心电(Electrocardiogram,ECG)信号特定类型的噪声和数据泛化的验证方面存在不足。为此,提出一种基于扩散模型的生成式ECG去噪模型,该模型利用模拟数据学习干净ECG分布的得分函数,基于欧拉法求解常微分方... 传统和深度学习的去噪技术在处理心电(Electrocardiogram,ECG)信号特定类型的噪声和数据泛化的验证方面存在不足。为此,提出一种基于扩散模型的生成式ECG去噪模型,该模型利用模拟数据学习干净ECG分布的得分函数,基于欧拉法求解常微分方程(ODE)生成和分离出ECG和噪声。该模型在模拟数据上进行了训练,并在独立的真实数据集上进行了验证。研究结果表明,与其他相关方法比较,该模型在去除多样性噪声以及保持ECG中不同振幅特征波形的一致性方面具有显著优势。 展开更多
关键词 ECG 扩散模型 去噪 神经网络 信号分离
下载PDF
Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms
5
作者 Maie Aboghazalah Passent El-kafrawy +3 位作者 Abdelmoty M.Ahmed Rasha Elnemr Belgacem Bouallegue Ayman El-sayed 《Computers, Materials & Continua》 SCIE EI 2024年第6期3855-3875,共21页
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s... Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments. 展开更多
关键词 ECG extraction ECG leads time series prior knowledge and arrhythmia chaos theory QRS complex analysis machine learning ECG classification
下载PDF
Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias
6
作者 Batyrkhan Omarov Meirzhan Baikuvekov +3 位作者 Daniyar Sultan Nurzhan Mukazhanov Madina Suleimenova Maigul Zhekambayeva 《Computers, Materials & Continua》 SCIE EI 2024年第7期341-359,共19页
This research introduces an innovative ensemble approach,combining Deep Residual Networks(ResNets)and Bidirectional Gated Recurrent Units(BiGRU),augmented with an Attention Mechanism,for the classification of heart ar... This research introduces an innovative ensemble approach,combining Deep Residual Networks(ResNets)and Bidirectional Gated Recurrent Units(BiGRU),augmented with an Attention Mechanism,for the classification of heart arrhythmias.The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency.The model leverages the deep hierarchical feature extraction capabilities of ResNets,which are adept at identifying intricate patterns within electrocardiogram(ECG)data,while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals.The integration of an Attention Mechanism refines the model’s focus on critical segments of ECG data,ensuring a nuanced analysis that highlights the most informative features for arrhythmia classification.Evaluated on a comprehensive dataset of 12-lead ECG recordings,our ensemble model demonstrates superior performance in distinguishing between various types of arrhythmias,with an accuracy of 98.4%,a precision of 98.1%,a recall of 98%,and an F-score of 98%.This novel combination of convolutional and recurrent neural networks,supplemented by attention-driven mechanisms,advances automated ECG analysis,contributing significantly to healthcare’s machine learning applications and presenting a step forward in developing non-invasive,efficient,and reliable tools for early diagnosis and management of heart diseases. 展开更多
关键词 CNN BiGRU ensemble deep learning ECG ARRHYTHMIA heart disease
下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
7
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ECG false positive rate deep learning CLASSIFICATION
下载PDF
深度学习在心律失常检测中的应用综述
8
作者 黄丽 蔡定建 +2 位作者 凌世康 欧阳昊 李嘉 《医疗卫生装备》 CAS 2024年第2期105-112,共8页
综述了深度学习在单导联和多导联心电图(electrocardiograph,ECG)心律失常检测中的应用现状,分析了深度学习在心律失常检测应用中存在泛化能力差、可解释性差、时间复杂度大等问题,并提出了解决方案。指出了随着算法的不断迭代与更新、... 综述了深度学习在单导联和多导联心电图(electrocardiograph,ECG)心律失常检测中的应用现状,分析了深度学习在心律失常检测应用中存在泛化能力差、可解释性差、时间复杂度大等问题,并提出了解决方案。指出了随着算法的不断迭代与更新、数据集的增加以及硬件设备性能的提升,深度学习在ECG心律失常检测中的应用前景更加广阔。 展开更多
关键词 深度学习 心律失常 单导联ECG 多导联ECG
下载PDF
心电领域中的自监督学习方法综述
9
作者 韩涵 黄训华 +3 位作者 常慧慧 樊好义 陈鹏 陈姞伽 《计算机科学与探索》 CSCD 北大核心 2024年第7期1683-1704,共22页
深度学习因其强大的数据表征能力已被广泛应用于心电(ECG)信号分析领域,但有监督方法的训练过程需要大量标签,而心电数据标注通常是耗时且成本高昂的。且有监督方法受限于训练集中有限的数据类型,泛化性能有限。因此,如何利用海量无标... 深度学习因其强大的数据表征能力已被广泛应用于心电(ECG)信号分析领域,但有监督方法的训练过程需要大量标签,而心电数据标注通常是耗时且成本高昂的。且有监督方法受限于训练集中有限的数据类型,泛化性能有限。因此,如何利用海量无标记心电信号进行数据挖掘和通用特征表示已成为亟待解决的问题。自监督学习(SSL)通过预先设置的代理任务从无标签数据中学习泛化特征来提升模型的特征表示能力,是一种解决心电数据标注缺失问题和提升模型迁移能力的有效途径。然而,现有的自监督学习综述大都专注于图像或时序信号领域,针对心电领域的自监督学习综述相对缺乏。为了填补这一空白,全面回顾了用于心电领域的先进的自监督学习方法。首先,从对比式和预测式两种学习范式出发对心电自监督学习方法进行了系统的总结与分类,阐述了不同类别方法的基本原理,细致分析了各个方法的特点,指出了各个方法的优势以及局限性。然后,归纳汇总了心电自监督学习中常用的数据集以及应用场景,总结了常用于心电领域的数据增强方法,为后续研究提供了系统性的总结参考。最后,深入讨论了当前自监督学习在心电领域中的挑战,并对未来心电自监督学习的发展方向进行了展望,为后续心电领域的自监督学习研究提供了指导。 展开更多
关键词 心电(ECG) 特征表示 深度学习 自监督学习
下载PDF
Emotion Detection Using ECG Signals and a Lightweight CNN Model
10
作者 Amita U.Dessai Hassanali G.Virani 《Computer Systems Science & Engineering》 2024年第5期1193-1211,共19页
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an... Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed. 展开更多
关键词 Emotions AMIGOS ECG LIGHTWEIGHT 1D CNN
下载PDF
Efficient ECG classification based on Chi-square distance for arrhythmia detection
11
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance Electrocardiogram(ECG)signal Particle swarm optimization(PSO)
下载PDF
Review on Development and Application of Fabric Electrodes in Electrocardiogram Monitoring Garments
12
作者 XIE Yutong ZAKARIA Norsaadah 《Journal of Donghua University(English Edition)》 CAS 2024年第5期482-491,共10页
Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identif... Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identifying arrhythmias.The evolving landscape of fabric electrodes,specifically designed for the prolonged monitoring of human ECG signals,is the focus of this research.Adhering to the preferred reporting items for systematic reviews and meta-analyses(PRISMA)statement and assimilating data from 81 pertinent studies sourced from reputable databases,the research conducts a comprehensive systematic review and meta-analysis on the materials,fabric structures and preparation methods of fabric electrodes in the existing literature.It provides a nuanced assessment of the advantages and disadvantages of diverse textile materials and structures,elucidating their impacts on the stability of biomonitoring signals.Furthermore,the study outlines current developmental constraints and future trajectories for fabric electrodes.These insights could serve as essential guidance for ECG monitoring system designers,aiding them in the selection of materials that optimize the measurement of biopotential signals. 展开更多
关键词 fabric electrode electrocardiogram(ECG)monitoring conductive material fabric structure meta-analysis
下载PDF
Research Progress of Atrial Fibrillation Detection Technology
13
作者 Yingying Yang Xue Dong Yuxi Liang 《Journal of Biosciences and Medicines》 2024年第4期14-20,共7页
Atrial fibrillation (AF) is the most common chronic arrhythmia in clinical practice, which can cause high disability and mortality with the progress of the disease. Many studies at home and abroad have shown that the ... Atrial fibrillation (AF) is the most common chronic arrhythmia in clinical practice, which can cause high disability and mortality with the progress of the disease. Many studies at home and abroad have shown that the incidence of atrial fibrillation gradually increases with age. Clinically, the onset of most AF patients is insidious, which is difficult to capture by routine electrocardiogram, and there is some difficulty in the diagnosis. In order to make the early diagnosis of atrial fibrillation more efficient and accurate, this paper reviews the current status and research progress of detection technology for atrial fibrillation at home and abroad, in order to provide a scientific basis for the early diagnosis of atrial fibrillation. 展开更多
关键词 Atrial Fibrillation ECG Detection Technology
下载PDF
深度学习技术在心律失常检测系统中的应用
14
作者 江跃龙 唐鹤芳 +1 位作者 陈妍文 刘梓良 《机电工程技术》 2024年第6期37-40,共4页
采用传统心电图开展心律失常诊断过程复杂、耗时耗力。因此,迫切需要研究一种准确的、自动的心律失常检测系统。基于MIT-BIH心率失常数据集,利用多模型对心电数据进行改良,并按AAMI标准对肢体导联II分类,找出最优维度和模型以助心律失... 采用传统心电图开展心律失常诊断过程复杂、耗时耗力。因此,迫切需要研究一种准确的、自动的心律失常检测系统。基于MIT-BIH心率失常数据集,利用多模型对心电数据进行改良,并按AAMI标准对肢体导联II分类,找出最优维度和模型以助心律失常检测。研究旨在通过深度学习提高准确性和鲁棒性,有效识别和分类各种心律失常。对MIT-BIH数据集进行详细分析,使用多模型实验,结果显示深度学习在心律失常检测中准确性高,可有效识别和分类不同心律失常类型。研究成果有望推动自动化心律失常检测系统发展,缩短诊断时间、减少医疗资源浪费,提高服务质量和效率。这一创新成果对促进心脏疾病早期发现和治疗具有重要临床意义。 展开更多
关键词 深度学习 ECG 心律失常 心率定位 心率异常分类
下载PDF
Evaluation of AVNRT & AVRT by Different Criteria: Old & New
15
作者 Abdul Hamid Tahmina Alam Sonali +3 位作者 Rizwan Rehan Pijous Biswas Subas Caandro Datta Asif Zaman 《World Journal of Cardiovascular Surgery》 2024年第7期95-106,共12页
The two most frequent causes of paroxysmal SVT are atrioventricular tachycardia (AVRT) and atrioventricular nodal re-entrant tachycardia (AVNRT). The purpose of this study was to assess the diagnostic efficacy of trad... The two most frequent causes of paroxysmal SVT are atrioventricular tachycardia (AVRT) and atrioventricular nodal re-entrant tachycardia (AVNRT). The purpose of this study was to assess the diagnostic efficacy of traditional and newly proposed ECG criteria in the identification of Avnrt and Avrt. Aim of the Study: The aim of this study was to evaluate Atrioventricular Nodal Reentrant Tachycardia (AVNRT) and Atrioventricular Re-entrant Tachycardia (AVRT) using both traditional and novel criteria. Methods: This prospective observational study was conducted at the Electrophysiology Unit, Department of Cardiology, National Institute of Cardiovascular Diseases (NICVD) in Dhaka, from February 2019 to January 2020. A total of 62 patients with Supraventricular Tachycardia (SVT) undergoing electrophysiology study (EPS) were included. Standard ECG criteria were applied for the differential diagnosis, and electrophysiological diagnoses were made using established criteria. Statistical analysis, including descriptive statistics and appropriate tests, was performed using SPSS 23.0. Result: In our study of 62 patients with Supraventricular Tachycardia (SVT), we found that 66.1% had AVNRT and 33.9% had AVRT. The mean age in AVNRT was higher than AVRT (41.3 ± 9.7 vs. 38.5 ± 14.3, p = 0.36) with statistically no significant difference, with similar gender distribution between AVNRT and AVRT groups. Classical AVNRT criteria were present in 30.6% of patients, and 45.2% showed a Pseudo R' wave in aVR. Additionally, 30.6% had an RP interval ≥100ms, more prevalent in AVRT patients (66.7%). Conclusion: Integrating traditional and novel criteria, including lead aVR analysis, enhances the electrocardiographic diagnosis of AVNRT and AVRT, offering a pathway to refined patient care. 展开更多
关键词 SVT (Supraventricular Tachycardia) AVNRT (Atrioventricular Nodal Re-Entrant Tachycardia) AVRT (Atrioventricular Re-Entrant Tachycardia) ECG Criteria Electrophysiology
下载PDF
Analysis of Osteoporosis Risk Factors in 148 Retired Employees Based on Physical Examination Results
16
作者 Sunhang Cao Zhengfeng Liu +3 位作者 Guiyu Cheng Dongmei Zhai Peng Li Chunshui Huang 《Proceedings of Anticancer Research》 2024年第4期116-123,共8页
Objective:To investigate and thoroughly understand the physical examination results of retired employees from a certain unit in Beijing,analyze their bone mineral density(BMD),and identify risk factors that may indica... Objective:To investigate and thoroughly understand the physical examination results of retired employees from a certain unit in Beijing,analyze their bone mineral density(BMD),and identify risk factors that may indicate osteoporosis.This provides a reference for the individualized prevention,identification,and control of osteoporosis among retired employees.Methods:The bone mineral density and potential factors of 148 retired employees from a unit in 2023 were analyzed and categorized into osteoporosis and non-osteoporosis groups.Key factors from the physical examinations of the two groups were compared.Spearman’s correlation analysis was used to determine the correlation between key factors and osteoporosis.Significant key factors were included in a regression analysis.A multivariate binary logistics regression was employed to identify risk factors indicative of osteoporosis.Results:Correlation analysis revealed that gender,age,and ECG ST-segment length were significantly associated with osteoporosis.Regression analysis showed that for each additional year of age,the likelihood of developing osteoporosis increased by 1.058 times;females were 2.865 times more likely to develop osteoporosis compared to males;the longer the ECG ST-segment,the higher the likelihood of osteoporosis.Conclusion:Gender,age,and ECG ST-segment length are significantly associated with osteoporosis.These indicators can provide reference points for early identification,early intervention,and reducing the incidence of osteoporosis in clinical settings. 展开更多
关键词 OSTEOPOROSIS GENDER Age ECG ST-segment Correlation analysis
下载PDF
全面解读IA ECG广色域测试版ICC文件
17
作者 姚磊磊 赵广 《中国印刷》 2024年第2期56-61,共6页
七色分色技术已发展多年,欧美印刷机构和协会相继投人研发和制定更新相关标准体系,当前色彩校准技术手段等条件正走向成熟,本文对IAECG广色域测试版ICC文件进行全面解读。
关键词 测试版 广色域 ECG 全面解读 色彩校准 分色技术 技术手段
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
18
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ECG信号 机器识别
下载PDF
基于卷积神经网络与ECG信息的多模态疲劳驾驶检测研究
19
作者 闫凯航 石岩松 +5 位作者 邓炬鑫 李汶翰 庞志颖 翁明珠 潘志广 孙修泽 《电脑知识与技术》 2024年第12期24-26,34,共4页
为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进... 为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进行对比,得出预警结果;接着,结合ECG信号对驾驶员的驾驶状态进行进一步分析,输出最终结果并触发预警。实验结果表明,该方法能够准确识别驾驶员的疲劳状态并及时发出预警,最高检测正确率达到了99%,验证了方法的可行性。 展开更多
关键词 疲劳检测 YOLOv4卷积神经网络模型 面部识别 ECG 特征融合
下载PDF
缓慢型心房颤动(Af)伴发长R-R间期在静态心电图(ECG)中发生率及意义
20
作者 毛社娟 《中文科技期刊数据库(引文版)医药卫生》 2024年第4期0115-0118,共4页
探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);... 探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);按照年龄,分为老年组30例(≥80岁)和非老年组24例(<80岁);比较各组伴发长R-R间期发生率。结果 本试验中,甲、乙组伴发长R-R间期发生率差异明显,甲组发生率显著更高(P<0.05)。老年组、非老年组伴发长R-R间期发生率差异明显,老年组发生率显著更高(P<0.05)。结论 缓慢型心房颤动行静态心电图检查,能够准确诊断患者有无伴发长R-R间期;针对老年患者和伴随头晕、黑朦、晕厥等症状患者,应加强其静态心电图检查,以便更好诊断、鉴别其病情,促使患者尽早接受专业治疗和干预,保证其生命安全与预后质量。 展开更多
关键词 静态心电图(ECG) 缓慢型心房颤动 长R-R间期
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部