为了分析多类支持向量机(Multi-category support vector machines,M-SVMs)的推广性能,对常用的M-SVMs算法加以概述,推导、总结了理论推广误差公式。对于给定的样本集,可以设计合理的编码来提高ECOCSVMs的推广性能,通过构造合理的层次...为了分析多类支持向量机(Multi-category support vector machines,M-SVMs)的推广性能,对常用的M-SVMs算法加以概述,推导、总结了理论推广误差公式。对于给定的样本集,可以设计合理的编码来提高ECOCSVMs的推广性能,通过构造合理的层次结构来提高H-SVMs推广性能,其余M-SVMs算法的推广性能均取决于样本空间。研究结果为有效使用M-SVMs提供了依据,为改进M-SVMs指明了方向。展开更多
文摘为了分析多类支持向量机(Multi-category support vector machines,M-SVMs)的推广性能,对常用的M-SVMs算法加以概述,推导、总结了理论推广误差公式。对于给定的样本集,可以设计合理的编码来提高ECOCSVMs的推广性能,通过构造合理的层次结构来提高H-SVMs推广性能,其余M-SVMs算法的推广性能均取决于样本空间。研究结果为有效使用M-SVMs提供了依据,为改进M-SVMs指明了方向。