This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are...This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies.展开更多
The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Ar...The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
As the sole obligate symbiotic birds in Africa,oxpeckers offer a unique model for studying symbiotic relationships.Due to the multitrophic level they occupy and the context dependent foraging behavior they exhibit,the...As the sole obligate symbiotic birds in Africa,oxpeckers offer a unique model for studying symbiotic relationships.Due to the multitrophic level they occupy and the context dependent foraging behavior they exhibit,the type of symbiotic relationship can be variable.In addition to providing a cleaning service to the host by removing ticks,oxpeckers frequently feed on blood,mucus,and saliva,inflicting potential damage on the host.Here,we used DNA metabarcoding on faecal samples to analyze the taxonomic composition of the trophic interactions of the Yellow-billed Oxpecker(Buphagus africanus)and Red-billed Oxpecker(B.erythrorhynchus)in northeastern Namibia.In contrast to conventional methods,DNA metabarcoding allows for a detailed identification of dietary resources encompassing both mammal hosts and consumed arthropods within the same samples.With this information,we examined differences in the diet composition between oxpecker species and localities,as well as the co-occurrence between host and arthropod species.Our findings revealed that oxpeckers predominantly source their diet from mammals,ticks,and flies;however,ticks and flies rarely co-occur in the diet of an individual.We observed variability among individuals in their feeding ecology,which is strongly correlated with locality and,to a lesser extent,with the mammal host.We noted a high degree of mobility between hosts within relatively short periods,with 32%of the samples showing traces of at least two mammal hosts.This study illustrates the dynamic foraging behavior of these specialized symbiotic birds,shedding light on their potential role in pest control services and disease transmission.展开更多
Grasslands in northern China serve the country as both an ecological barrier and a livestock production base.There,installing enclosures has been becoming the major grassland restoration measure adopted by many local ...Grasslands in northern China serve the country as both an ecological barrier and a livestock production base.There,installing enclosures has been becoming the major grassland restoration measure adopted by many local governments.However,the effects of restoration on both ecological and production benefits of grassland remain unclear for implemented grassland restoration policies.Therefore,a representative rangeland in northern China,the Maodeng pasture in Inner Mongolia Autonomous Region was selected as the study area,and remote sensing monitoring analyses were carried out to quantify the ecological benefits and economic benefits from 2015 to 2021.The results showed that:1) in terms of ecological benefits,the grassland area with a grassland coverage rate of more than 60% accounts for 32.3% of the regional area,and 86.4% of its grassland grew significantly better than the same period in2015,showing a significant improvement in grassland growth.Using the average amount of carbon per unit area as the ecological benefit evaluation index,it increased by 27.1% to 32.48Tg C/yr from 2015 to 2021.2) In terms of economic benefits,both theoretical grass production and livestock carrying capacity increased from 2015 to 2021.Compared to 2015,the theoretical grass production in 2021 increased by 24.8% to 71 900 t.The livestock carrying capacity reached 52 100 sheep units in 2021,nearly 11 000 sheep units more than that in 2015.During the study period,multiple economic indicators(on a per capita basis of permanent residents) for the pastoral area of Xilinhot City to which the Maodeng pasture belongs,have grown steadily.Per capita total income rose from 29 630 yuan(RMB) in2015 to 62 859 yuan(RMB) in 2021.Relying on grassland resources to develop the pastoral ecology also broadens the potential economic development space.Overall,the establishment of the reserve and the experiment of implanting an enclosure policy have had a significant and positive impact on Maodeng pasture’s development from both an ecological and economic perspective.With the support of scientific evidence,enclosure policy can be extended to more than 110 000 km~2 of grasslands in northern China with similar precipitation and temperature conditions,enhancing the productive and ecological potential of grasslands.The above research results will contribute to the scientific formulation of grassland pasture quality improvement plans in northern China.展开更多
Emerging contaminants are defined as chemicals that are not currently(or have only recently been)regulated and about which there are concerns regarding their impact on human or ecological health.Such contaminants are ...Emerging contaminants are defined as chemicals that are not currently(or have only recently been)regulated and about which there are concerns regarding their impact on human or ecological health.Such contaminants are widely detected in air,water,soil,sediment,and biotic environments.It is against this backdrop of urgency that we have curated this special issue titled“Emerging Contaminants Control:Science and Technology,”with the goal of uniting the latest scientific insights and pioneering strategies to address this global concern.This special issue embarks on a comprehensive examination of the emerging contaminants dilemma,covering aspects such as risk assessment,remediation technologies,environmental surveying,and the broader implications for policy.Through a collection of articles,we probe deep into the core of this issue,showcasing studies that range from appraising environmental risks to forging new methods for treatment and scrutinizing the occurrence of contaminants across different environmental settings.展开更多
During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas d...During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.展开更多
Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River...Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.展开更多
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16...Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.展开更多
Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these f...Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.展开更多
The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little i...The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.展开更多
Desertification poses significant threats to the ecological security and sustainable economic and social development of countries worldwide. In China, existing desertified land primarily lies between 35°–50°...Desertification poses significant threats to the ecological security and sustainable economic and social development of countries worldwide. In China, existing desertified land primarily lies between 35°–50°N, covering arid and semi-arid regions and a total area of 1.688×106 km^(2), which represents 17.58%of the total territorial area of the country (Fig. 1).展开更多
Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees w...Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management.展开更多
Multiple borehole samples are collected from the Baiyun Depression in deep-water area of the northern South China Sea(SCS)in an effort to reconstruct transgression processes during the Paleogene based on palynalgal an...Multiple borehole samples are collected from the Baiyun Depression in deep-water area of the northern South China Sea(SCS)in an effort to reconstruct transgression processes during the Paleogene based on palynalgal analysis.This study indicates that the Baiyun Depression generated a large group of palynopore assemblages and fluvial/lacustrine-related algae during the early and middle Eocene when the Wenchang Formation was deposited.The entire depression was dominated by fluvial and lacustrine facies before transgression.Its eastern and southeastern sags transitioned to shallow marine environment by generating a large abundance of marine dinoflagellates during the Enping deposition of the late Eocene.Meanwhile,the southern uplift zone simply yielded fluvial/lacustrine-related palynopores and algae,and was dominated by the fluvial and lacustrine environment during the early stage of the Enping Formation,prior to shifting into transitional setting in the later period.Northwestern sags remained extensive fluvial and delta facies without existence of marine dinoflagellates.It was until the depositional stage of the Zhuhai Formation(Oligocene)that the overall depression was strongly impacted from transgression process.Both eastern and southeastern sags were mainly under deep marine setting on a continental slope while northwestern and southern areas developed transitional facies.Although distribution and accumulation patterns varied greatly among sub-sags,the overall Baiyun Depression was characterized by widespread development of marine dinoflagellates.It should be noted that the northwestern sag also partly generated large-scale river delta deposits.Due to the eustatic rise and change of SCS spreading axis,the overall Baiyun Depression was mostly influenced by the deep marine environment on a continental slope during the early Miocene.Both northwestern sag and southern uplift zone were found plentiful marine dinoflagellates.In summary,transgression initiated from the eastern and southeastern Baiyun Depression before subsequently progressing into the farther west.Evolution of transgression process is also greatly consistent with the gradual westward expansion of the SCS.展开更多
The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regio...The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin.展开更多
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte...Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.展开更多
The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Ther...The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.展开更多
Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influ...Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range.展开更多
Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferrugin...Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.展开更多
Temperature is a key factor that shapes the distribution of organisms.Having knowledge about how species respond to temperature is relevant to devise strategies for addressing the impacts of climate change.Aquatic ins...Temperature is a key factor that shapes the distribution of organisms.Having knowledge about how species respond to temperature is relevant to devise strategies for addressing the impacts of climate change.Aquatic insects are particularly vulnerable to climate change,yet there is still much to learn about their ecology and distribution.In the Yungas ecoregion of Northwestern Argentina,cold-and warm-adapted species of the orders Ephemeroptera,Plecoptera,and Trichoptera(EPT)are segregated by elevation.We modeled the ecological niche of South American EPT species in this region using available data and projected their potential distribution in geographic space.Species were grouped based on their ecogeographic similarity,and we analyzed their replacement pattern along elevation gradients,focusing on the ecotone where opposing thermal preferences converge.Along this interface,we identified critical points where the combined incidence of cold and warm assemblages maximizes,indicating a significant transition zone.We found that the Montane Cloud Forest holds the interface,with a particularly greater suitability at its lower boundary.The main axis of the interface runs in a N-S direction and falls between 14°C-16°C mean annual isotherms.The probability of a particular location within a basin being classified as part of the interface increases as Kira’s warmth index approaches a score around 150.Understanding the interface is critical for defining the thermal limits of species distribution and designing biomonitoring programs.Changes in the location of thermal constants related to mountainous ecotones may cause vertical displacement of aquatic insects and vegetation communities.We have recognized significant temperature thresholds that serve as indicators of suitability for the interface.As global warming is anticipated to shift these indicators,we suggest using them to monitor the imprints of climate change on mountain ecosystems.展开更多
基金supported by China Geological Survey(DD20211301).
文摘This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies.
基金supported by the Key R&D Program of Xinjiang Uygur Autonomous Region,China(2022B03021)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20030101)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region,China(2022TSYCLJ0011).
文摘The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金partially supported by the Namibia Students Financial Assistance Fund(NSFAF)Kreditanstalt für Wiederaufbau(KfW)-University of Namibia(UNAM,BMZ Ref.2015.67.015)+2 种基金funded by the project TROPIBIO NORTE-01-0145-FEDER-000046supported by Norte Portugal Regional Operational Programme(NORTE2020)developed in the framework of the“Twin Lab CIBIO/UNAM”(UNESCO Chair Life on Land)。
文摘As the sole obligate symbiotic birds in Africa,oxpeckers offer a unique model for studying symbiotic relationships.Due to the multitrophic level they occupy and the context dependent foraging behavior they exhibit,the type of symbiotic relationship can be variable.In addition to providing a cleaning service to the host by removing ticks,oxpeckers frequently feed on blood,mucus,and saliva,inflicting potential damage on the host.Here,we used DNA metabarcoding on faecal samples to analyze the taxonomic composition of the trophic interactions of the Yellow-billed Oxpecker(Buphagus africanus)and Red-billed Oxpecker(B.erythrorhynchus)in northeastern Namibia.In contrast to conventional methods,DNA metabarcoding allows for a detailed identification of dietary resources encompassing both mammal hosts and consumed arthropods within the same samples.With this information,we examined differences in the diet composition between oxpecker species and localities,as well as the co-occurrence between host and arthropod species.Our findings revealed that oxpeckers predominantly source their diet from mammals,ticks,and flies;however,ticks and flies rarely co-occur in the diet of an individual.We observed variability among individuals in their feeding ecology,which is strongly correlated with locality and,to a lesser extent,with the mammal host.We noted a high degree of mobility between hosts within relatively short periods,with 32%of the samples showing traces of at least two mammal hosts.This study illustrates the dynamic foraging behavior of these specialized symbiotic birds,shedding light on their potential role in pest control services and disease transmission.
基金Under the auspices of the Inner Mongolia Autonomous Region Science and Technology Achievement Transformation Special Project(No.2020CG0123)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA26050301-01)。
文摘Grasslands in northern China serve the country as both an ecological barrier and a livestock production base.There,installing enclosures has been becoming the major grassland restoration measure adopted by many local governments.However,the effects of restoration on both ecological and production benefits of grassland remain unclear for implemented grassland restoration policies.Therefore,a representative rangeland in northern China,the Maodeng pasture in Inner Mongolia Autonomous Region was selected as the study area,and remote sensing monitoring analyses were carried out to quantify the ecological benefits and economic benefits from 2015 to 2021.The results showed that:1) in terms of ecological benefits,the grassland area with a grassland coverage rate of more than 60% accounts for 32.3% of the regional area,and 86.4% of its grassland grew significantly better than the same period in2015,showing a significant improvement in grassland growth.Using the average amount of carbon per unit area as the ecological benefit evaluation index,it increased by 27.1% to 32.48Tg C/yr from 2015 to 2021.2) In terms of economic benefits,both theoretical grass production and livestock carrying capacity increased from 2015 to 2021.Compared to 2015,the theoretical grass production in 2021 increased by 24.8% to 71 900 t.The livestock carrying capacity reached 52 100 sheep units in 2021,nearly 11 000 sheep units more than that in 2015.During the study period,multiple economic indicators(on a per capita basis of permanent residents) for the pastoral area of Xilinhot City to which the Maodeng pasture belongs,have grown steadily.Per capita total income rose from 29 630 yuan(RMB) in2015 to 62 859 yuan(RMB) in 2021.Relying on grassland resources to develop the pastoral ecology also broadens the potential economic development space.Overall,the establishment of the reserve and the experiment of implanting an enclosure policy have had a significant and positive impact on Maodeng pasture’s development from both an ecological and economic perspective.With the support of scientific evidence,enclosure policy can be extended to more than 110 000 km~2 of grasslands in northern China with similar precipitation and temperature conditions,enhancing the productive and ecological potential of grasslands.The above research results will contribute to the scientific formulation of grassland pasture quality improvement plans in northern China.
文摘Emerging contaminants are defined as chemicals that are not currently(or have only recently been)regulated and about which there are concerns regarding their impact on human or ecological health.Such contaminants are widely detected in air,water,soil,sediment,and biotic environments.It is against this backdrop of urgency that we have curated this special issue titled“Emerging Contaminants Control:Science and Technology,”with the goal of uniting the latest scientific insights and pioneering strategies to address this global concern.This special issue embarks on a comprehensive examination of the emerging contaminants dilemma,covering aspects such as risk assessment,remediation technologies,environmental surveying,and the broader implications for policy.Through a collection of articles,we probe deep into the core of this issue,showcasing studies that range from appraising environmental risks to forging new methods for treatment and scrutinizing the occurrence of contaminants across different environmental settings.
基金supported by the National Natural Science Foundation of China(Grant No.52078034).
文摘During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.
基金the National Natural Science Foundation of China(31971859)the Doctoral Research Start-up Fund of Northwest A&F University,China(Z1090121109)the Shaanxi Science and Technology Development Plan Project(2023-JC-QN-0197).
文摘Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.
基金This study was supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2017ZX07101-002).
文摘Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant ZDBS-LY-DQC019)the National Key Research and Development Program of China(2023YFE0124300)+4 种基金the National Natural Science Foundation of China(32301344)Major Program of Institute of Applied EcologyChinese Academy of Sciences(IAEMP202201)supported by grants from the U.S.National Science Foundation(DEB 2240431)the Seeding Projects for Enabling Excellence and Distinction(SPEED)Program at Washington University in St.Louis。
文摘Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.
基金supported by the National Key Research and Development Program of China(2021YFD1901201-05)the China Agriculture Research System of MOF and MARA(CARS-22)+1 种基金the Special Program for Basic Research and Talent Training of Jiangxi Academy of Agricultural Sciences,China(JXSNKYJCRC202301 and JXSNKYJCRC202325)the National Natural Science Foundation of China(32160766).
文摘The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.
文摘Desertification poses significant threats to the ecological security and sustainable economic and social development of countries worldwide. In China, existing desertified land primarily lies between 35°–50°N, covering arid and semi-arid regions and a total area of 1.688×106 km^(2), which represents 17.58%of the total territorial area of the country (Fig. 1).
基金financed by the National Science Centre,Poland,under project No.2019/35/B/NZ8/01381 entitled"Impact of invasive tree species on ecosystem services:plant biodiversity,carbon and nitrogen cycling and climate regulation"by the Institute of Dendrology,Polish Academy of Sciences。
文摘Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management.
基金The National Natural Science Foundation of China under contract No.42076066。
文摘Multiple borehole samples are collected from the Baiyun Depression in deep-water area of the northern South China Sea(SCS)in an effort to reconstruct transgression processes during the Paleogene based on palynalgal analysis.This study indicates that the Baiyun Depression generated a large group of palynopore assemblages and fluvial/lacustrine-related algae during the early and middle Eocene when the Wenchang Formation was deposited.The entire depression was dominated by fluvial and lacustrine facies before transgression.Its eastern and southeastern sags transitioned to shallow marine environment by generating a large abundance of marine dinoflagellates during the Enping deposition of the late Eocene.Meanwhile,the southern uplift zone simply yielded fluvial/lacustrine-related palynopores and algae,and was dominated by the fluvial and lacustrine environment during the early stage of the Enping Formation,prior to shifting into transitional setting in the later period.Northwestern sags remained extensive fluvial and delta facies without existence of marine dinoflagellates.It was until the depositional stage of the Zhuhai Formation(Oligocene)that the overall depression was strongly impacted from transgression process.Both eastern and southeastern sags were mainly under deep marine setting on a continental slope while northwestern and southern areas developed transitional facies.Although distribution and accumulation patterns varied greatly among sub-sags,the overall Baiyun Depression was characterized by widespread development of marine dinoflagellates.It should be noted that the northwestern sag also partly generated large-scale river delta deposits.Due to the eustatic rise and change of SCS spreading axis,the overall Baiyun Depression was mostly influenced by the deep marine environment on a continental slope during the early Miocene.Both northwestern sag and southern uplift zone were found plentiful marine dinoflagellates.In summary,transgression initiated from the eastern and southeastern Baiyun Depression before subsequently progressing into the farther west.Evolution of transgression process is also greatly consistent with the gradual westward expansion of the SCS.
基金funded by the National Natural Science Foundation of China(42471329,42101306,42301102)the Natural Science Foundation of Shandong Province(ZR2021MD047)+1 种基金the Scientific Innovation Project for Young Scientists in Shandong Provincial Universities(2022KJ224)the Gansu Youth Science and Technology Fund Program(24JRRA100).
文摘The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin.
基金supported by the Basic Research Project of Key Scientific Research Projects of Colleges and Universities of Henan Province,China(23ZX012).
文摘Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.
基金Supported by the Innovation Team Project of Ecological Environment Monitoring and Restoration of Fishery Waters in the East China Sea of the Chinese Academy of Fishery Sciences(No.2020TD14)the National Basic Research Program of China(973 Program)(No.2010CB429005)。
文摘The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.
基金supported this work by granting the doctoral scholarship to Ravi Fernandes Mariano,Carolina Njaime Mendes and Cléber Rodrigo de Souza,and through the master’s scholarship to Aloysio Souza de Mourathe postdoctoral scholarship to Vanessa Leite Rezende+2 种基金The authors also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPQ)by project funding(Edital Universal 2014,Process 459739/2014-0)the Instituto Alto-Montana da Serra Fina,the Fundação de AmparoàPesquisa do Estado de Minas Gerais(FAPEMIG)the Fundação Grupo Boticário de ProteçãoàNatureza,and finally the Fundo de Recuperação,Proteção e Desenvolvimento Sustentável das Bacias Hidrográficas do Estado de Minas Gerais(Fhidro).
文摘Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range.
基金Anglo American and Knowledge Center for Biodiversity for financial supportthe research funding agencies CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico)+2 种基金scholarship from CNPq(151341/2023-0,150001/2023-1)FAPEMIG(Fundação de AmparoàPesquisa do Estado de Minas Gerais)Peld-CRSC 17(Long Term Ecology Program-campo rupestre of Serra do Cipó)。
文摘Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.
文摘Temperature is a key factor that shapes the distribution of organisms.Having knowledge about how species respond to temperature is relevant to devise strategies for addressing the impacts of climate change.Aquatic insects are particularly vulnerable to climate change,yet there is still much to learn about their ecology and distribution.In the Yungas ecoregion of Northwestern Argentina,cold-and warm-adapted species of the orders Ephemeroptera,Plecoptera,and Trichoptera(EPT)are segregated by elevation.We modeled the ecological niche of South American EPT species in this region using available data and projected their potential distribution in geographic space.Species were grouped based on their ecogeographic similarity,and we analyzed their replacement pattern along elevation gradients,focusing on the ecotone where opposing thermal preferences converge.Along this interface,we identified critical points where the combined incidence of cold and warm assemblages maximizes,indicating a significant transition zone.We found that the Montane Cloud Forest holds the interface,with a particularly greater suitability at its lower boundary.The main axis of the interface runs in a N-S direction and falls between 14°C-16°C mean annual isotherms.The probability of a particular location within a basin being classified as part of the interface increases as Kira’s warmth index approaches a score around 150.Understanding the interface is critical for defining the thermal limits of species distribution and designing biomonitoring programs.Changes in the location of thermal constants related to mountainous ecotones may cause vertical displacement of aquatic insects and vegetation communities.We have recognized significant temperature thresholds that serve as indicators of suitability for the interface.As global warming is anticipated to shift these indicators,we suggest using them to monitor the imprints of climate change on mountain ecosystems.