Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce...Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells.展开更多
Recent studies have highlighted the increase in treatment resistant depression. Of particular concern is the rising trend of depression and suicide rates among Young Adults. Ketamine was approved for treatment resista...Recent studies have highlighted the increase in treatment resistant depression. Of particular concern is the rising trend of depression and suicide rates among Young Adults. Ketamine was approved for treatment resistant depression in 2019 by the US Food and Drug Administration. It received an additional indication for treatment of suicidality. While intranasal Ketamine is approved for depression, recent data about intravenous infusion of Ketamine in controlled inpatient settings has been promising. ECT has a long-standing trend for being used for resistant depression and recent comparison trials have revealed positive results when head-to-head comparisons are made with Ketamine. Future studies need to focus on patient selection and wherein treatment algorithm should Ketamine be selected as treatment modality.展开更多
Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus ...Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus health,vigor,and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization.Here,we sowed seeds of Japanese larch(Larix kaempferi)in 0.2-L containers with 0.5 g(low fertilization;LF)or 2 g(high fertilization;HF)of slow-release fertilizer early in the growing season.One month later,we irrigated seedlings with non-sterilized ectomycorrhizal inoculum(ECM)or sterilized solution(non-ECM),and after about 2 months,plants were either kept well watered(WW;500 mL water/plant/week)or subjected to drought(DR;50 mL water per plant/week)until the end of the growing season.HF largely stimulated plant growth and above-and belowground biomass production,eff ects that are of practical signifi cance,but caused a small decrease in stomatal conductance(Gs 390)and transpiration rate(E 390),which in practice is insignifi cant.ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF.DR caused a large decrease in CO 2 assimilation,and enhanced stomatal closure and induced senescence.DR also largely depleted foliar Mg and enriched foliar K.Although DR caused a large decrease in foliar P content in LF,it moderately increased P in HF.Likewise,DR increased foliar K in HF but not in LF,and decreased foliar P in ECM plants but not in non-ECM plants.Conversely,ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF.These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modifi ed by soil fertility and soil microorganisms.This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.展开更多
Inventory data were available from 96 plots of even-aged,monoculture,tall-open forests of Eucalyptus pilularis Smith,aged 2-63 years,growing in sub-tropical regions along the east coast of Australia.A model was develo...Inventory data were available from 96 plots of even-aged,monoculture,tall-open forests of Eucalyptus pilularis Smith,aged 2-63 years,growing in sub-tropical regions along the east coast of Australia.A model was developed relating the maximum possible stem basal area growth rate of individual trees to their stem basal area.For any tree size,this maximum increased as site productivity increased.However,the size at which this maximum occurred decreased as productivity increased.Much research has shown that,at any stand age,trees of a particular stem basal area are taller on more productive sites than on less productive ones.Taller trees incur greater respiratory costs to ensure maintenance of the photo synthetic capacity of their canopies;this reduces their growth rates.It was concluded that trees with larger basal areas will have the maximum possible growth rate on a less productive site,whilst trees with smaller basal areas will have the maximum possible on a more productive site.The model developed may constitute the first stage of a complete individual tree growth model system to predict wood yields from these forests.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82170426 and 22078193)Double Thousand Plan of Jiangxi Province(Nos.461654,jxsq2019102052).
文摘Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells.
文摘Recent studies have highlighted the increase in treatment resistant depression. Of particular concern is the rising trend of depression and suicide rates among Young Adults. Ketamine was approved for treatment resistant depression in 2019 by the US Food and Drug Administration. It received an additional indication for treatment of suicidality. While intranasal Ketamine is approved for depression, recent data about intravenous infusion of Ketamine in controlled inpatient settings has been promising. ECT has a long-standing trend for being used for resistant depression and recent comparison trials have revealed positive results when head-to-head comparisons are made with Ketamine. Future studies need to focus on patient selection and wherein treatment algorithm should Ketamine be selected as treatment modality.
基金supported by JSPS KAKENHI Grant Number JP17F17102 (to EA and MK)Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (NUIST)(No. 003080)the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province
文摘Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus health,vigor,and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization.Here,we sowed seeds of Japanese larch(Larix kaempferi)in 0.2-L containers with 0.5 g(low fertilization;LF)or 2 g(high fertilization;HF)of slow-release fertilizer early in the growing season.One month later,we irrigated seedlings with non-sterilized ectomycorrhizal inoculum(ECM)or sterilized solution(non-ECM),and after about 2 months,plants were either kept well watered(WW;500 mL water/plant/week)or subjected to drought(DR;50 mL water per plant/week)until the end of the growing season.HF largely stimulated plant growth and above-and belowground biomass production,eff ects that are of practical signifi cance,but caused a small decrease in stomatal conductance(Gs 390)and transpiration rate(E 390),which in practice is insignifi cant.ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF.DR caused a large decrease in CO 2 assimilation,and enhanced stomatal closure and induced senescence.DR also largely depleted foliar Mg and enriched foliar K.Although DR caused a large decrease in foliar P content in LF,it moderately increased P in HF.Likewise,DR increased foliar K in HF but not in LF,and decreased foliar P in ECM plants but not in non-ECM plants.Conversely,ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF.These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modifi ed by soil fertility and soil microorganisms.This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.
文摘Inventory data were available from 96 plots of even-aged,monoculture,tall-open forests of Eucalyptus pilularis Smith,aged 2-63 years,growing in sub-tropical regions along the east coast of Australia.A model was developed relating the maximum possible stem basal area growth rate of individual trees to their stem basal area.For any tree size,this maximum increased as site productivity increased.However,the size at which this maximum occurred decreased as productivity increased.Much research has shown that,at any stand age,trees of a particular stem basal area are taller on more productive sites than on less productive ones.Taller trees incur greater respiratory costs to ensure maintenance of the photo synthetic capacity of their canopies;this reduces their growth rates.It was concluded that trees with larger basal areas will have the maximum possible growth rate on a less productive site,whilst trees with smaller basal areas will have the maximum possible on a more productive site.The model developed may constitute the first stage of a complete individual tree growth model system to predict wood yields from these forests.