In this work the performance of a screening analytical method for Energy Dispersive X-Ray Fluorescence (EDXRF) analysis in terms of accuracy and precision was evaluated through analysis of rock standard reference mate...In this work the performance of a screening analytical method for Energy Dispersive X-Ray Fluorescence (EDXRF) analysis in terms of accuracy and precision was evaluated through analysis of rock standard reference materials. The method allowed the division of elements into four groups taking into account the excitation energies and measurement conditions of the sample. Two standard reference materials were used and 15 sample replicates were prepared and analyzed, then statistics were applied to assess the precision and accuracy of analytical results. The obtained results show that major compounds or elements (SiO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, CaO, Fe<sub>2</sub>O<sub>3</sub>, Ti) can be determined in fine powder sample with a deviation lower than 15%, and a relative standard deviation in the range (1 - 10)%. The deviation was found to be lower than 5% for major compounds such as K<sub>2</sub>O, and CaO, which suggest that the EDXRF is accurate in evaluating major elemental concentrations in rock samples. It was also found that the method seems to be more accurate and precise for major elements than for trace element investigation. This screening analytical method can be used for routine analysis with acceptable results, even though the method should be optimized to increase its precision and accuracy.展开更多
Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the ...Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the produced water lead to significant degradation of subsurface equipment, specifically the production tubing. Debris generated through the degradation of the inner part of the tubing becomes a constituent of the scaling that deposits in the tubing and blocks the flow of the production fluid, inducing higher maintenance costs. This paper looks at the characteristics of the scaling in regard to the produced water and outlines the economic impact of the produced water induced degradation of the tubing structure.展开更多
文摘In this work the performance of a screening analytical method for Energy Dispersive X-Ray Fluorescence (EDXRF) analysis in terms of accuracy and precision was evaluated through analysis of rock standard reference materials. The method allowed the division of elements into four groups taking into account the excitation energies and measurement conditions of the sample. Two standard reference materials were used and 15 sample replicates were prepared and analyzed, then statistics were applied to assess the precision and accuracy of analytical results. The obtained results show that major compounds or elements (SiO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, CaO, Fe<sub>2</sub>O<sub>3</sub>, Ti) can be determined in fine powder sample with a deviation lower than 15%, and a relative standard deviation in the range (1 - 10)%. The deviation was found to be lower than 5% for major compounds such as K<sub>2</sub>O, and CaO, which suggest that the EDXRF is accurate in evaluating major elemental concentrations in rock samples. It was also found that the method seems to be more accurate and precise for major elements than for trace element investigation. This screening analytical method can be used for routine analysis with acceptable results, even though the method should be optimized to increase its precision and accuracy.
文摘Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the produced water lead to significant degradation of subsurface equipment, specifically the production tubing. Debris generated through the degradation of the inner part of the tubing becomes a constituent of the scaling that deposits in the tubing and blocks the flow of the production fluid, inducing higher maintenance costs. This paper looks at the characteristics of the scaling in regard to the produced water and outlines the economic impact of the produced water induced degradation of the tubing structure.