The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in i...The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.展开更多
Collagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM.The regeneration of healthy bone tissue requires simultaneous ...Collagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM.The regeneration of healthy bone tissue requires simultaneous support for both osteoblasts and,where angiogenesis is intended,endothelial cells.Hence it is important to tailor carefully the biochemical and structural characteristics of the scaffold to suit the needs of each cell type.This work describes for the first time a systematic study to gain insight into the cell type-specific response of primary human osteoblast(hOBs)and human dermal microvascular endothelial cells(HDMECs)to insoluble collagen-based biomaterials.The behaviour was evaluated on both 2D films and 3D scaffolds,produced using freeze-drying.The collagen was cross-linked at various EDC/NHS concentrations and mono-cultured with hOBs and HDMECs to assess the effect of architectural features and scaffold stabilization on cell behaviour.It was observed that 3D scaffolds cross-linked at 30%of the standard conditions in literature offered an optimal combination of mechanical stiffness and cellular response for both cell types,although endothelial cells were more sensitive to the degree of cross-linking than hOBs.Architectural features have a time-dependent impact on the cell migration profile,with alignment being the most influential parameter overall.展开更多
基金Funded by the National Natural Science Foundation of China (10832012)the Natural Science Foudation of Tianjin city(08JCYBJC03400)
文摘The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)and Geistlich Pharma AG.R.E.C.and S.M.B.acknowledge funding from an EPSRC Professorial Fellowship(EP/N019938/1)which also supported the research undertaken by D.V.B.D.V.B.would like to thank the Cambridge Royce facilities grant EP/P024947/1 and Sir Henry Royce Institute-recurrent grant EP/R00661X/1.
文摘Collagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM.The regeneration of healthy bone tissue requires simultaneous support for both osteoblasts and,where angiogenesis is intended,endothelial cells.Hence it is important to tailor carefully the biochemical and structural characteristics of the scaffold to suit the needs of each cell type.This work describes for the first time a systematic study to gain insight into the cell type-specific response of primary human osteoblast(hOBs)and human dermal microvascular endothelial cells(HDMECs)to insoluble collagen-based biomaterials.The behaviour was evaluated on both 2D films and 3D scaffolds,produced using freeze-drying.The collagen was cross-linked at various EDC/NHS concentrations and mono-cultured with hOBs and HDMECs to assess the effect of architectural features and scaffold stabilization on cell behaviour.It was observed that 3D scaffolds cross-linked at 30%of the standard conditions in literature offered an optimal combination of mechanical stiffness and cellular response for both cell types,although endothelial cells were more sensitive to the degree of cross-linking than hOBs.Architectural features have a time-dependent impact on the cell migration profile,with alignment being the most influential parameter overall.