For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machin...Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.展开更多
Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distributi...Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distribution of laminated shale with great vertical heterogeneity.To solve this problem,taking Chang 73 sub-member in Yanchang Formation of Ordos Basin as an example,an idea of predicting lamina combinations by combining'conventional log data-mineral composition prediction-lamina combination type identification'has been worked out based on machine learning under supervision on the premise of adequate knowledge of characteristics of lamina mineral components.First,the main mineral components of the work area were figured out by analyzing core data,and the log data sensitive to changes of the mineral components was extracted;then machine learning was used to construct the mapping relationship between the two;based on the variations in mineral composition,the lamina combination types in typical wells of the research area were identified to verify the method.The results show the approach of'conventional log data-mineral composition prediction-lamina combination type identification'works well in identifying the types of shale lamina combinations.The approach was applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution characteristics of the laminae.展开更多
Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of ...Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance.展开更多
In this paper, we propose to enhance machine translation system combination (MTSC) with a sentence-level paraphrasing model trained by a neural network. This work extends the number of candidates in MTSC by paraphrasi...In this paper, we propose to enhance machine translation system combination (MTSC) with a sentence-level paraphrasing model trained by a neural network. This work extends the number of candidates in MTSC by paraphrasing the whole original MT translation sentences. First we train a neural paraphrasing model of Encoder-Decoder, and leverage the model to paraphrase the MT system outputs to generate synonymous candidates in the semantic space. Then we merge all of them into a single improved translation by a state-of-the-art system combination approach (MEMT) adding some new paraphrasing features. Our experimental results show a significant improvement of 0.28 BLEU points on the WMT2011 test data and 0.41 BLEU points without considering the out-of-vocabulary (OOV) words for the sentence-level paraphrasing model.展开更多
Intermittent demand forecasting is an important challenge in the process of smart supply chain transformation,and accurate demand forecasting can reduce costs and increase efficiency for enterprises.This study propose...Intermittent demand forecasting is an important challenge in the process of smart supply chain transformation,and accurate demand forecasting can reduce costs and increase efficiency for enterprises.This study proposes an intermittent demand combination forecasting method based on internal and external data,builds intermittent demand feature engineering from the perspective of machine learning,predicts the occurrence of demand by classification model,and predicts non-zero demand quantity by regression model.Based on the strategy selection on the inventory side and the stocking needs on the replenishment side,this study focuses on the optimization of the classification problem,incorporates the internal and external data of the enterprise,and proposes two combination forecasting optimization methods on the basis of the best classification threshold searching and transfer learning,respectively.Based on the real data of auto after-sales business,these methods are evaluated and validated in multiple dimensions.Compared with other intermittent forecasting methods,the models proposed in this study have been improved significantly in terms of classification accuracy and forecasting precision,which validates the potential of combined forecasting framework for intermittent demand and provides an empirical study of the framework in industry practice.The results show that this research can further provide accurate upstream inputs for smart inventory and guarantee intelligent supply chain decision-making in terms of accuracy and efficiency.展开更多
Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of m...Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.展开更多
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
The difficulty to select the best system parameters restricts the engineering application of stochastic resonance (SR). An adaptive cascade stochastic resonance (ACSR) is proposed in the present study. The propose...The difficulty to select the best system parameters restricts the engineering application of stochastic resonance (SR). An adaptive cascade stochastic resonance (ACSR) is proposed in the present study. The proposed method introduces correlation theory into SR, and uses correlation coefficient of the input signals and noise as a weight to construct the weighted signal-to-noise ratio (WSNR) index. The influence of high frequency noise is alleviated and the signal-to-noise ratio index used in traditional SR is improved accordingly. The ACSR with WSNR can obtain optimal parameters adaptively. And it is not necessary to predict the exact frequency of the target signal. In addition, through the secondary utilization of noise, ACSR makes the signal output waveforrn smoother and the fluctuation period more obvious. Simulation example and engineering application of gearbox fault diagnosis demonstrate the effectiveness and feasibility of the proposed method.展开更多
Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the opti...Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the optimal classified model to extract PPI, this paper presents a strategy to find the optimal kernel function from a kernel function set. The strategy is that in the kernel function set which consists of different single kernel functions, endlessly finding the last two kernel functions on the performance in PPI extraction, using their optimal kernel function to replace them, until there is only one kernel function and it’s the final optimal kernel function. Finally, extracting PPI using the classified model made by this kernel function. This paper conducted the PPI extraction experiment on AIMed corpus, the experimental result shows that the optimal convex combination kernel function this paper presents can effectively improve the extraction performance than single kernel function, and it gets the best precision which reaches 65.0 among the similar PPI extraction systems.展开更多
A methematical model based upon the theory of differential geometry isestablished for the combination winding of revolving bodies and programs are developedfor the filament winding operations as well.Trial winding on ...A methematical model based upon the theory of differential geometry isestablished for the combination winding of revolving bodies and programs are developedfor the filament winding operations as well.Trial winding on a filament winding machineproved this model is right and useful.展开更多
Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of...Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.展开更多
The estimation of potato biomass and yield can optimize the planting pattern and tap the production potential.Based on partial least square(PLSR),multiple linear regression(MLR),support vector machine(SVM),random fore...The estimation of potato biomass and yield can optimize the planting pattern and tap the production potential.Based on partial least square(PLSR),multiple linear regression(MLR),support vector machine(SVM),random forest(RF),BP neural network and other machine learning algorithms,the biomass estimation model of potato in different growth stages is constructed by using single variables such as original spectrum,first-order differential spectrum,combined spectrum index and vegetation index(VI)and their coupled combination variables.The accuracy of the models is compared and analyzed,and the best modeling method of biomass in different growth stages is selected.Based on the optimized modeling method,the biomass of each growth stage is estimated,and the yield estimation model of different growth stages is constructed based on the estimation results and the linear regression analysis method,and the accuracy of the model is verified.The results showed that in tuber formation stage,starch accumulation stage and maturity stage,the biomass estimation accuracy based on combination variable was the highest,the best modeling method was MLR and SVM,in tuber growth stage,the best modeling method was MLR,the effect of yield estimation is good.It provides a reference for the algorithm selection of crop biomass and yield models based on machine learning.展开更多
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
基金supported in part by the National Natural Science Foundation of China Grant No.51877139。
文摘Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.
基金co-supported by the National Natural Science Foundation of China(Grant Nos.U1762217,42072161)。
文摘Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distribution of laminated shale with great vertical heterogeneity.To solve this problem,taking Chang 73 sub-member in Yanchang Formation of Ordos Basin as an example,an idea of predicting lamina combinations by combining'conventional log data-mineral composition prediction-lamina combination type identification'has been worked out based on machine learning under supervision on the premise of adequate knowledge of characteristics of lamina mineral components.First,the main mineral components of the work area were figured out by analyzing core data,and the log data sensitive to changes of the mineral components was extracted;then machine learning was used to construct the mapping relationship between the two;based on the variations in mineral composition,the lamina combination types in typical wells of the research area were identified to verify the method.The results show the approach of'conventional log data-mineral composition prediction-lamina combination type identification'works well in identifying the types of shale lamina combinations.The approach was applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution characteristics of the laminae.
基金supported in part by the National Natural Science Foundation of China under Grant 51737008.
文摘Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance.
基金This paper is supported by the project of Natural Science Foundation of China (Grant No. 61272384&61370170).
文摘In this paper, we propose to enhance machine translation system combination (MTSC) with a sentence-level paraphrasing model trained by a neural network. This work extends the number of candidates in MTSC by paraphrasing the whole original MT translation sentences. First we train a neural paraphrasing model of Encoder-Decoder, and leverage the model to paraphrase the MT system outputs to generate synonymous candidates in the semantic space. Then we merge all of them into a single improved translation by a state-of-the-art system combination approach (MEMT) adding some new paraphrasing features. Our experimental results show a significant improvement of 0.28 BLEU points on the WMT2011 test data and 0.41 BLEU points without considering the out-of-vocabulary (OOV) words for the sentence-level paraphrasing model.
基金This work was supported jointly by the funding from Shandong In-dustrial Internet Innovation and Entrepreneurship Community,the Na-tional Natural Science Foundation of China(Grant No.:71810107003)the National Social Science Foundation of China(Grant No.:18ZDA109).
文摘Intermittent demand forecasting is an important challenge in the process of smart supply chain transformation,and accurate demand forecasting can reduce costs and increase efficiency for enterprises.This study proposes an intermittent demand combination forecasting method based on internal and external data,builds intermittent demand feature engineering from the perspective of machine learning,predicts the occurrence of demand by classification model,and predicts non-zero demand quantity by regression model.Based on the strategy selection on the inventory side and the stocking needs on the replenishment side,this study focuses on the optimization of the classification problem,incorporates the internal and external data of the enterprise,and proposes two combination forecasting optimization methods on the basis of the best classification threshold searching and transfer learning,respectively.Based on the real data of auto after-sales business,these methods are evaluated and validated in multiple dimensions.Compared with other intermittent forecasting methods,the models proposed in this study have been improved significantly in terms of classification accuracy and forecasting precision,which validates the potential of combined forecasting framework for intermittent demand and provides an empirical study of the framework in industry practice.The results show that this research can further provide accurate upstream inputs for smart inventory and guarantee intelligent supply chain decision-making in terms of accuracy and efficiency.
基金Supported by the National Key Research and Development Program of China(No.2019YFA0707201)the Fund of the Institute of Scientific and Technical Information of China(No.ZD2021-17).
文摘Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB706805)the National Natural Science Foundation of China (Grant No. 51035007)
文摘The difficulty to select the best system parameters restricts the engineering application of stochastic resonance (SR). An adaptive cascade stochastic resonance (ACSR) is proposed in the present study. The proposed method introduces correlation theory into SR, and uses correlation coefficient of the input signals and noise as a weight to construct the weighted signal-to-noise ratio (WSNR) index. The influence of high frequency noise is alleviated and the signal-to-noise ratio index used in traditional SR is improved accordingly. The ACSR with WSNR can obtain optimal parameters adaptively. And it is not necessary to predict the exact frequency of the target signal. In addition, through the secondary utilization of noise, ACSR makes the signal output waveforrn smoother and the fluctuation period more obvious. Simulation example and engineering application of gearbox fault diagnosis demonstrate the effectiveness and feasibility of the proposed method.
文摘Owing to the effect of classified models was different in Protein-Protein Interaction(PPI) extraction, which was made by different single kernel functions, and only using single kernel function hardly trained the optimal classified model to extract PPI, this paper presents a strategy to find the optimal kernel function from a kernel function set. The strategy is that in the kernel function set which consists of different single kernel functions, endlessly finding the last two kernel functions on the performance in PPI extraction, using their optimal kernel function to replace them, until there is only one kernel function and it’s the final optimal kernel function. Finally, extracting PPI using the classified model made by this kernel function. This paper conducted the PPI extraction experiment on AIMed corpus, the experimental result shows that the optimal convex combination kernel function this paper presents can effectively improve the extraction performance than single kernel function, and it gets the best precision which reaches 65.0 among the similar PPI extraction systems.
文摘A methematical model based upon the theory of differential geometry isestablished for the combination winding of revolving bodies and programs are developedfor the filament winding operations as well.Trial winding on a filament winding machineproved this model is right and useful.
文摘Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.
基金This study was supported by the Natural Science Foundation of China(41871333)the Important Project of Science and Technology of the Henan Province(182102110186)Thanks go to Haikuan Feng for the image data and field sampling collection.
文摘The estimation of potato biomass and yield can optimize the planting pattern and tap the production potential.Based on partial least square(PLSR),multiple linear regression(MLR),support vector machine(SVM),random forest(RF),BP neural network and other machine learning algorithms,the biomass estimation model of potato in different growth stages is constructed by using single variables such as original spectrum,first-order differential spectrum,combined spectrum index and vegetation index(VI)and their coupled combination variables.The accuracy of the models is compared and analyzed,and the best modeling method of biomass in different growth stages is selected.Based on the optimized modeling method,the biomass of each growth stage is estimated,and the yield estimation model of different growth stages is constructed based on the estimation results and the linear regression analysis method,and the accuracy of the model is verified.The results showed that in tuber formation stage,starch accumulation stage and maturity stage,the biomass estimation accuracy based on combination variable was the highest,the best modeling method was MLR and SVM,in tuber growth stage,the best modeling method was MLR,the effect of yield estimation is good.It provides a reference for the algorithm selection of crop biomass and yield models based on machine learning.